

3.6 Column Within a Rigid Frames

The factor K will depend on the ratio of the column to girder stiffness at each end.

Notes:

- 1. For pinned column base, use G = 10.
- 2. For fixed column base, use G = 1.

Also it is depending on the relative movements between the columns ends. i.e. frame without side sway (inhibited side sway) and with side sway or (uninhibited side sway). See Fig. C-C2.3 and Fig. C-C2.4.

Fig. C-C2.3. Alignment chart—sidesway inhibited (braced frame).

Fig. C-C2.4. Alignment chart—sidesway uninhibited (moment frame).

The frame is called braced frame (sides way inhibited), if it has one of the following:

Other else the frame is called unbraced frame (sides way uninhibited).

Example No. 1: The rigid frame shown in Figure is unbraced. Each member is oriented so that its web is in the plane of frame (bending about x-axis). Determine the effective length factor for columns AB and BC.

Solve:

1) Section Properties:

Section	$I_{x}(in^{4})$	Length (ft)
W12 × 96	833	15
W12 × 120	1070	15
W24 × 55	1350	20
$W24 \times 68$	1830	18

2) Column AB

For joint A:
$$G_A = \frac{\left(\Sigma \frac{I}{L}\right)_{Columns}}{\left(\Sigma \frac{I}{L}\right)_{Girders}} = \frac{833/15}{1350/20 + 1830/18} = \frac{55.53}{169.17} = 0.328$$

For joint B: $G_B = \frac{\left(\Sigma \frac{I}{L}\right)_{Columns}}{\left(\Sigma \frac{I}{L}\right)_{Girders}} = \frac{833/15 + 1070/15}{1350/20 + 1830/18} = \frac{126.87}{169.17} = 0.75$

From the alignment chart for sides way uninhibited (AISC Figure C-C2.4). use $G_A = 0.328$ and $G_B = 0.75$.

Fig. C-C2.4. Alignment chart-sidesway uninhibited

H.W: Determine the effective length factor for columns BC. (Ans: $K_x = 1.8$)

Maryam Hameed Nasir

Example No. 2: For the two-story moment frame shown down, the column and girder sizes have been determined as shown. Assume in-plane bending about the strong axes for the columns and girders. Determine the effective length factor, K, for columns BF and FJ using the alignment charts.

Solve:

1) Section Properties:

Member	Section	$I_x(in^4)$	Length (ft)
FJ	W12 × 50	391	20
BF	$W12 \times 72$	597	15
EF, IJ	W18 × 35	510	20
JK	W18 × 40	612	30
FG	W18 × 50	800	30

2) Column BF

For joint B: $G_A = 10$ (pinned Support)

For joint F:
$$G_B = \frac{\left(\Sigma \frac{I}{L}\right)_{Columns}}{\left(\Sigma \frac{I}{L}\right)_{Girders}} = \frac{391/20 + 597/15}{510/20 + 800/30} = \frac{59.35}{52.167} = 1.14$$

Maryam Hameed Nasir

From the alignment chart for sides way uninhibited (AISC Figure C-C2.4), use $G_A = 10$ and $G_B = 1.14$. Get: $K_x = 1.93$.

3) Column FJ

For joint $F: G_A = 1.14$

For joint J:
$$G_B = \frac{\left(\sum \frac{I}{L}\right)_{Columns}}{\left(\sum \frac{I}{L}\right)_{Girders}} = \frac{391/20}{510/20 + 612/30} = \frac{19.55}{45.9} = 0.43$$

From the alignment chart for sides way uninhibited (AISC Figure C-C2.4), use $G_A = 1.14$ and $G_B = 0.43$. Get: $K_x = 1.25$.

Problem:

1. The frame shown in Figure is unbraced, and bending is about the x-axis of the members. All beams are W16 \times 40, and all columns are W12 \times 58. Determine the effective length factor K_x for column AB and BC.

Ans: *a*. Kx = 1.98, *b*. Kx = 1.42

2. The frame shown in Figure is unbraced against sides way. Relative moments of inertia of the members have been assumed for preliminary design purposes. Use the alignment chart and determine K_x for members AB, BC, DE, and EF.

Ans: Member AB: Kx = 2.00, BC: Kx = 1.40, DE: Kx = 1.20,EF: Kx = 1.28.