

Al-Mustaqbal-College University
Chemical Engineering and Petroleum
Industry Department
Analytical chemistry
First class / first term Lecture Two part 1

> By

Asst. lect. Ban Ali Hassan

## Lecture Two

## $\Rightarrow$ Examples

Example 1 : Calculate the weight of one mole of CaSO4 $\cdot 7 \mathrm{H} 2 \mathrm{O}$. ? Solve:

One mole is the formula weight expressed in grams. The atomic weight is :

$$
\mathrm{Ca}=40.08, \quad \mathrm{~S}=32.06, \mathrm{O}=16, \mathrm{H}=1
$$

$$
\text { M.wt. }=40.08^{*} 1+32.06^{*} 1+16^{*} 4+7^{*} 2^{\star} 1+7^{*} 16
$$

$$
=262.25 \mathrm{~g} / \mathrm{mol}
$$

Moles $=\frac{\text { weight grams }}{\text { formula weight }(\mathrm{g} / \mathrm{mol})}$
$1 \mathrm{~mol}=\frac{\text { weight }(\mathrm{g})}{262.25 \mathrm{~g} / \mathrm{mol}}$
Weight $(\mathrm{g})=1 \mathrm{~mol} * 262.25 \mathrm{~g} / \mathrm{mol}$

$$
=262.25 \mathrm{~g} .
$$

Example 2: Calculate the number of moles in $500 \mathrm{mg} \mathrm{Na}_{2} \mathrm{WO}_{4}$ (sodium tungstate).
$\mathrm{Mol}=\frac{500 \mathrm{mg}}{293.8 \frac{\mathrm{mg}}{\mathrm{mmol}}} \times 0.001 \mathrm{~mol} / \mathrm{mmol}$
$=0.00170 \mathrm{~mol}$

## Lecture Two

## $\Rightarrow$ Molarity

The mole concept is useful in expressing concentrations of solutions, especially in analytical chemistry, where we need to know the volume ratios in which solutions of different materials will react. A one-molar solution is defined as one that contains one mole of substance in each liter of a solution,
It is prepared by dissolving one mole of the substance in the solvent and diluting to a final volume of one liter in a volumetric flask; or a fraction or multiple of the mole may be dissolved and diluted to the corresponding fraction or multiple of a liter. Molar is abbreviated as $M$.

$$
\begin{aligned}
\text { Moles } & =(\text { moles } / \text { liter }) \times \text { liters } \\
& =\text { molarity } \times \text { liters }
\end{aligned}
$$

## Example

A solution is prepared by dissolving 1.26 g AgNO3 in a $250-\mathrm{mL}$ volumetric flask and diluting to volume. Calculate the molarity of the silver nitrate solution. How many mill moles AgNO3 were dissolved?

## Solution

$$
M=\frac{1.26 \mathrm{~g} / 169.9 \mathrm{~g} / \mathrm{mol}}{0.250 \mathrm{~L}}=0.0297 \mathrm{~mol} / \mathrm{L}(\text { or } 0.0297 \mathrm{mmol} / \mathrm{mL})
$$

Then,

$$
\text { Millimoles }=(0.0297 \mathrm{mmol} / \mathrm{mL})(250 \mathrm{~mL})=7.42 \mathrm{mmol}
$$

## Lecture Two

Example : How many grams $\mathrm{Na}_{2} \mathrm{SO}_{4}$ should be weighed out to prepare 500 mL of a 0.100 $M$ solution?
Atomic mass for : $\mathrm{Na}=23 \quad, \mathrm{~S}=32.1 \quad, \mathrm{O}=16$
Solve :
Molarity $=$ mole $/$ volume
$\mathrm{M}=\mathrm{n}(\mathrm{mmol}) / \mathrm{V}(\mathrm{ml})$
$0.100 \mathrm{M}=\mathrm{n}(\mathrm{mol}) / 500 \mathrm{ml}$
$\mathrm{n}(\mathrm{mmol})=0.100 \mathrm{M} * 500 \mathrm{ml}=50 \mathrm{mmol}$
$\mathrm{n}(\mathrm{mmol})=$ weight $(\mathrm{g}) / \operatorname{M.wt}(\mathrm{g} / \mathrm{mol})$
M.wt $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)=23 * 2+32.1 * 1+16 * 4=142 \mathrm{mg} / \mathrm{mmol}$
weight $(\mathrm{g})=50 \mathrm{mmol} * 142 \frac{\mathrm{mg}}{\mathrm{mmol}} * \frac{1 \mathrm{~g}}{1000 \mathrm{mg}}$

$$
=7.1 \mathrm{~g}
$$

Example : Calculate the concentration of potassium ion ( $\mathrm{K}^{+}$) in grams per liter after mixing 100 mL of 0.250 M KCl and 200 mL of $0.100 \mathrm{M} \mathrm{K}_{2} \mathrm{SO}_{4}$, M. $\mathrm{wt}_{\mathrm{K}}=39.098 \mathrm{~m}$ $\mathrm{g} / \mathrm{mmol}$
Solve: $\quad \mathrm{KCl} \rightarrow \mathrm{K}^{+}+\mathrm{Cl}^{-}, \quad \mathrm{K}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{~K}^{+}+\mathrm{SO}_{4}^{-}$
$\mathrm{n}_{\mathrm{K}+}=\mathrm{n}_{\mathrm{KCl}}+2^{*} \mathrm{n}_{\text {K2SO4 }}$
$\mathrm{n}_{\text {KCl }}=\mathrm{M}_{\text {KCl }} * \mathrm{~V}_{\text {KCl }}$
$\mathrm{n}_{\mathrm{KCl}}=0.250 \mathrm{M} * 100 \mathrm{ml}=25 \mathrm{mmol}$
$\mathrm{n}_{\mathrm{K} 2 \mathrm{SO} 4}=\mathrm{M}_{\mathrm{K} 2 \mathrm{SO} 4} * \mathrm{~V}_{\mathrm{K} 2 \mathrm{SO}}$

$$
=0.100 \mathrm{M} * 200 \mathrm{ml}=20 \mathrm{mmol}
$$

$\mathrm{n}_{\mathrm{K}+}=25 \mathrm{mmol}+2 * 20 \mathrm{mmol}=65 \mathrm{mmol}$ in total volume $(300 \mathrm{ml})$.
$\mathrm{V}_{\mathrm{k}+}=200 \mathrm{ml}+100 \mathrm{ml}=300 \mathrm{ml}$
weight of $\mathrm{K}^{+}=\mathrm{n}_{\mathrm{K}+} / \mathrm{V}_{\mathrm{K}+}$

$$
=(65 \mathrm{mmol} * 39.1 \mathrm{mg} / \mathrm{mmol} * 0.001 \mathrm{~g} / \mathrm{mg}) / 300 \mathrm{ml} * 0.001 \mathrm{ml} / \mathrm{l}=8.47 \mathrm{~g} / \mathrm{L}
$$

## Lecture Two

## $\Rightarrow$ Normality

Although molarity is widely used in chemistry, some chemists use a unit of concentration in quantitative analysis called normality (N). A one-normal solution contains one equivalent per liter.
$\mathbf{N}=\frac{\text { wt. }(\mathbf{g}) \times 1000}{\text { eq.wt } . \times \mathbf{V ~ m l}}$
Eq. wt. is explained in lecture one ( General principles to calculate the equivalent weight ) page : 7

Or
$\mathbf{N}=\frac{\boldsymbol{\rho} \times \% \times 10}{\text { eq.wt. }}$
$\boldsymbol{\rho}$ : density of solution
\% : concentration of subtenant

