General Physics

Lecture 2: Electricity

first stage

by
Assistant lecturer

Ansam Fadil Ali Showard

Electrical Current(التيار الكهربائي):

It is the continuous flow of free electrons. The unit of current is Ampere
(A) and is measured by Ammeter. It is denoted by the letter "I".

Ampere(الامبير):

it is the unit of electric current measurement, and it is the flow of charge one coulomb through of the conductor per one second.

Voltage(الفولتية):

To create the current flow in a conductor; the electrical pressure which is used to move the electrons is called voltage. It is denoted by the letter ' V '. the unit of voltage is 'volt' and is measured by voltmeter.

Resistance(المقاومة):

It is the property in the conductor prevent the flow of current through of it. It is denoted by the letter ' R '. the unit of resistance is ohm (Ω) and it is measured by Ohm meter.

Ohm (الاوم): It is the unit of resistance.

Electric Power(القدرة الكهربائيـية):

Power is defined as the product of voltage and current. Unit of power is watts and denoted by the letter "P".

Engineering prefix(البادئـات الهندسية):

Multiplier	Prefix	Symbol
10^{18}	exa	E
10^{15}	peta	P
10^{12}	tera	T
10^{9}	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{2}	hecto	h
10	deka	da
10^{-1}	deci	d
10^{-2}	centi	c
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p
10^{-15}	femto	f
10^{-18}	atto	a

Example-1: Express the following in engineering prefix:
a) 10×10^{4} volt.
b) 0.1×10^{-3} watts.
C) 250×10^{-7}
ampere

Solution:
a) 10×10^{4} Volt $=100 \times 10^{3} \mathrm{~V}=100 \mathrm{kV}$.
b) 0.1×10^{-3} Watts $=0.1$ miliwatt $=0.1 \mathrm{~mW}$
c) 250×10^{-7} ampere $=25 \times 10^{-6} \mathrm{~A}=25 \mu \mathrm{~A}$

Example-2 Convert 0.1MV to kV
Solution
$0.1 \times 10^{6} V=\left(0.1 \times 10^{3}\right) \times 10^{3}=100 \mathrm{KV}$

Law of resistance(قانون المقاومهd):

The resistance of a conductor in a circuit depends upon the following states

1- It depends upon the material.
2- Directly proportional to the length of the conductor.
3- Inversely proportional to the area of the cross-section of the conductor.

4- It also depends upon the temperature of the conductor.

Resistance calculation(حساب المقاومه):

$$
R=\rho \frac{L}{A}
$$

Where:

$$
\mathrm{R} \text { is the resistance (ohms) }
$$ ρ is specific resistance (resistivity) in (ohm. Meter).

L is length of the conductor (meter).
A is area of the cross section of a conductor (Sq.m).

The specific resistance(المقاومه النوعيه):

is a characteristic of a material that depends on the type of material and the temperature, It is denoted by the letter (ρ).

The following table shows the specific resistance of material:

Materials		Specific resistance is ohm - meter
Gold	-	2.42×10^{-8}
Silver	-	1.63×10^{-8}
Copper	-	1.724×10^{-8}
Aluminium	-	2.83×10^{-8}
Rubber	-	8×10^{7}
Glass	-	$10 \times 10^{1 .}$

Example-3:

$1 \mathrm{~cm}^{2}$ cross section 50 m long copper conductor has specific resistance $1.72 * 10^{-8} \Omega . \mathrm{cm}$ find the resistance?

Solution:

$$
\mathrm{L}=50 \mathrm{~m}=50 * 100 \mathrm{~cm}=5000 \mathrm{~cm}
$$

$$
\mathrm{A}=1 \mathrm{~cm}^{2}
$$

Specific resistance $=1.72 \times 10^{-8} \Omega . . \mathrm{cm}$

$$
\begin{gathered}
\mathrm{R}=\rho \frac{L}{A} \\
=1.72 \times 10^{-8} \times \frac{5000}{1}=0.0086 \Omega
\end{gathered}
$$

Ohm's Law:

A relationship was derived by the scientist Ohm; between the current; voltage and resistance of the circuit. It says; "At a constant temperature; the current flowing through the circuit is directly proportional to the voltage and inversely proportional to the resistance". If any two of the three values $(\mathrm{I} ; \mathrm{V} ; \mathrm{R})$ are known the third value can be easily calculated.

$$
\begin{gathered}
\text { Current= }=\frac{\text { voltage }}{\text { Resistance }} \\
\text { i.e. } I=\frac{V}{R} \\
R=\frac{V}{I} \\
V=I \times R
\end{gathered}
$$

Example-4:The supply voltage of the circuit is 240 V and the resistance value is 12Ω. Calculate the current flowing through this circuit.

Solution:
Voltage (V) $=240 \mathrm{~V}$
Resistance $(\mathrm{R})=12 \Omega$
Current $(\mathrm{I})=$?
According to Ohm's law:
$\mathrm{I}=\frac{V}{R}=\frac{240}{12}=20 \mathrm{~A}$

Example-5 The supply voltage of the circuit is 230 V. if 10A current is flowing through this circuit. Calculate the resistance value of the circuit.

Solution:
Voltage $(\mathrm{V})=230 \mathrm{v}$
Current $(\mathrm{I})=10 \mathrm{~A}$
Resistance $(\mathrm{R})=$?
According to Ohm's law
$\mathrm{R}=\frac{V}{I}$
$\mathrm{R}=\frac{230 \mathrm{~V}}{10 \mathrm{~A}}$
$\mathrm{R}=23 \Omega$

Homework:

Find out the voltage of the circuit when 6A current is Homework flowing through the circuit. Resistance of the circuit is 40Ω.

