Sheet 1 (Let 3)

1) A mixture of water ($\mathrm{Mw}=18 \mathrm{gram} / \mathrm{mole}$) and acetone ($\mathrm{Mw}=58$ gram $/ \mathrm{mole}$) at 756 mmHg boils at $70^{\circ} \mathrm{C}$. Calculate the molar fraction of each using the following table:

Temperature	Vapor pressure (atm)	Vapor pressure (atm)
${ }^{\circ} \mathrm{C}$	Acetone	Water
60	1.14	0.198
70	1.58	0.312
80	2.12	0.456
90	2.81	0.694

Sheet 1
Sheet 1 / Solution.

1) According to Raoult's Law:

$$
\begin{aligned}
& P=x_{\text {acctome }} P_{\text {acetone }}+x_{\text {water }} P_{\text {water }} \\
& P=\frac{756 \mathrm{mmHg}}{760 \mathrm{mmHg} \text { gate }}=0.995 \mathrm{~atm}
\end{aligned}
$$

by substituting the values at $70^{\circ} \mathrm{C}$ we have

$$
0.995=x_{\text {acetone }} 1.58+x_{\text {water }} 0.312
$$

The sum of molar fractions is 1

$$
x_{\text {acton }}+x_{\text {water }}=1 \Rightarrow x_{\text {water }}=1-x_{\text {acetone }}
$$

Thus

$$
x_{\text {acetone }} 1.58+0.312\left(1-x_{\text {acetone }}\right)=0.995
$$

$$
x_{\text {acetone }}+1.58+0.312-0.312 x_{\text {acetone }}=0.995
$$

$$
1.26 x_{\text {acetone }}+0.312=0.995
$$

$$
x_{\text {acetone }}=\frac{0.995-0.312}{1.26}=0.54
$$

$$
x_{\text {water }}=1-0.54=0.46
$$

2) A mixture of 40.0 g of oxygen ($\mathrm{Mw} 31.9988 \mathrm{~g} / \mathrm{mol}$) and 40.0 g of helium (Mw $4.0026 \mathrm{~g} / \mathrm{mol}$) has a total pressure of 0.900 atm . What is the partial pressure of each gas?

Sheet 1
2) Calculate moles of each gas

$$
\begin{aligned}
& n_{H_{c}}=\frac{m_{H_{c}}}{M_{W_{H C}}}=\frac{40 \mathrm{~g}}{4.0026 \mathrm{~g} / \mathrm{mol}}=9.9935 \mathrm{~mol} \\
& n_{O_{2}}=\frac{m_{O_{2}}}{M_{W_{O_{2}}}}=\frac{40 \mathrm{~g}}{31.9988 \mathrm{~g} / \mathrm{mol}}=1.25005 \mathrm{~mol} \\
& n_{\text {total }}=n_{H_{c}}+n_{O_{2}}=9.9935+1.25005=11.24355 \mathrm{~mol}
\end{aligned}
$$

Calculate mole fraction

$$
y_{\text {He }}=\frac{n_{\text {He }}}{n_{\text {total }}}=\frac{9.9935 \mathrm{~mol}}{11.24355 \mathrm{mal}}=0.88882
$$

Calculate partial pressure

$$
\begin{aligned}
& y_{\text {He }}=\frac{P_{\mathrm{He}_{e}}}{P_{\text {total }}} \Rightarrow P_{\mathrm{He}}=y_{\mathrm{He}} * P_{\text {total }} \\
& \begin{aligned}
P_{\mathrm{He}}=0.9 \mathrm{~atm} * 0.88882 & =0.79938 \mathrm{~atm} \\
& \simeq 0.8 \mathrm{~atm}
\end{aligned}
\end{aligned}
$$

either

$$
\begin{aligned}
& P_{\text {total }}=P_{\mathrm{He}}+P_{\mathrm{O}_{2}} \Rightarrow P_{\mathrm{O}_{2}}=P_{\text {total }}-P_{\mathrm{He}} \\
& P_{\mathrm{O}_{2}}=0.9-0.8=0.1 \mathrm{~atm}
\end{aligned}
$$

(ar)

$$
\begin{aligned}
y_{O_{2}}= & \frac{n_{O_{2}}}{n_{\text {total }}}=\frac{1.25005 \mathrm{~mol}}{11.24355 \mathrm{~mol}}=0.11118 \\
y_{\mathrm{O}_{2}}= & \frac{P_{\mathrm{O}_{2}}}{P_{\text {total }}} \Rightarrow P_{\mathrm{O}_{2}}=y_{O_{2}} \times P_{\text {taal }}=0.11118 \times 0.9 \mathrm{~atm} \\
& P_{\mathrm{O}_{2}} \simeq 1 \text { at m }
\end{aligned}
$$

3) A sample of 1.43 g of helium ($\mathrm{Mw} 4.0026 \mathrm{~g} / \mathrm{mol}$) and an unweighed quantity of $\mathrm{O}_{2}(\mathrm{Mw} 31.9988 \mathrm{~g} / \mathrm{mol})$ are mixed in a flask at room temperature. The partial pressure of helium in the flask is 42.5 torr, and the partial pressure of oxygen is 158 torr. What mass of O_{2} is in the sample?

Sheet 1
3)

$$
\begin{aligned}
& n_{\mathrm{He}}=\frac{m_{H_{e}}}{M_{W_{H}}}=\frac{1.43 \mathrm{~g}}{4.0026 \mathrm{~g} / \mathrm{md}}=0.35727 \mathrm{mal} \\
& P_{\text {total }}=P_{\text {lt }}+P_{\mathrm{O}_{2}}=42.5+158=200.5 \text { tor } \\
& y_{\mathrm{He}}=\frac{P_{\mathrm{He}}}{P_{\text {metal }}}=\frac{42.5}{200.5}=0.21197 \\
& y_{\mathrm{H}_{e}}+y_{\mathrm{O}_{2}}=1 \Rightarrow y_{\mathrm{O}_{2}}=1-y_{\mathrm{HC}}=1-0.21197 \\
& y_{02}=0.78803 \\
& y_{\mathrm{O}_{2}}=\frac{n_{\mathrm{O}_{2}}}{n_{\text {total }}}=\frac{n_{\mathrm{O}_{2}}}{n_{\mathrm{He}}+n_{\mathrm{O}_{2}}} \\
& 0.78803=\frac{n_{\mathrm{O}_{2}}}{0.35727+n_{\mathrm{O}_{2}}} \\
& n_{0_{2}}=0.282+0.78803 n_{0_{2}} \\
& N_{O_{2}}-0.78803 n_{O_{2}}=0.282 \\
& 0.21197 n_{O_{2}}=0.282 \Rightarrow n_{0_{2}}=\frac{0.282}{0.21197} \\
& n_{o_{2}}=1.33 \mathrm{~mol} \\
& n_{O_{2}}=\frac{m_{O_{2}}}{M_{\omega_{O_{2}}}} \Rightarrow m_{O_{2}}=n_{O_{2}} \leftrightarrow M_{\omega_{O_{2}}} \\
& m_{\mathrm{O}_{2}}=1.33 * 31.9988=42.558 \text { gram }
\end{aligned}
$$

4) At 60 C the vapor pressures of pure benzene and toluene are 0.513 and 0.185 bar, respectively. For a solution with 0.60 mole fraction toluene, what are the partial pressures of toluene and benzene, and what is the mole fraction of toluene in the vapor?

Sheet 1
4)

$$
\begin{aligned}
& x_{\text {tot }}+x_{\text {ben }}=1 \\
& =1-x_{\text {td l }} \\
& x_{\text {ben }}=1-0.6=0.4 \\
& x_{\text {ben }}=1-0.6=1
\end{aligned}
$$

$$
P_{\text {tole }}=x_{\text {tale }} P_{\text {tall }}^{0}=0.6 * 0.185=0.111 \mathrm{bar}
$$

$$
P_{\text {ben. }}=x_{\text {ben. }} P_{\text {ben. }}^{i}=0.4 * 0.513=0.205 \text { bar }
$$

either

$$
P_{\text {total }}=P_{\text {tow }}+P_{\text {ben. }}=0.111+0.205=0.316 \mathrm{bar}
$$

$$
y_{\text {fol. }}=\frac{P_{\text {toll }}}{P_{\text {total }}}=\frac{0.111}{0.316}=0.351
$$

(or)

$$
\begin{aligned}
y_{\text {tot }} & =\frac{x_{\text {toil }} P_{\text {toil }}^{0}}{P_{\text {ben }}^{\circ}+\left(P_{\text {toil }}^{\circ}-P_{\text {ben }}^{0}\right) x_{\text {toll }}} \\
& =\frac{0.6+0.185}{0.513+(0.185-0.513)(0.6)} \\
& =0.351
\end{aligned}
$$

5) The vapor pressure of 1-propanol is 10.0 torr at $14.7^{\circ} \mathrm{C}$. Calculate the vapor pressure at $52.8^{\circ} \mathrm{C}$. Heat of vaporization of 1-propanol $=47.2$ $\mathrm{kJ} / \mathrm{mol}$.

Sheet 1

$$
\text { 5) } \begin{aligned}
& \ln \left(\frac{P_{1}}{P_{2}}\right)=\frac{-\Delta H_{\text {map }}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right) \\
& \Delta H_{\text {Lap }}=47.2 \frac{\mathrm{KJ}}{\mathrm{~mol}} * 1000 \frac{\mathrm{~J}}{\mathrm{~kJ}}=47200 \frac{\mathrm{~d}}{\mathrm{md}} \\
& T_{K}=T_{0} \mathrm{C}+273.5 \\
& T_{1}=14.7+273.5=288.2 \mathrm{~K} \\
& T_{2}=52.8+273.5=326.3 \mathrm{~K} \\
& \ln \left(\frac{10}{P_{2}}\right)=\frac{-47200}{8.314}\left(\frac{1}{288.2}-\frac{1}{326.3}\right) \\
& \ln \left(\frac{10}{P_{2}}\right)=-5677.17164(0.00346981-0.00366466) \\
& \ln \left(\frac{10}{P_{2}}\right)=-2.3
\end{aligned}
$$

Take exp of both side

$$
\begin{aligned}
& \exp \left(\ln \left(\frac{10}{P_{2}}\right)\right)=\exp (-2.3) \\
& \frac{10}{P_{2}}=0.10026 \\
& 0.10026 P_{2}=10 \Rightarrow P_{2}=\frac{10}{0.10026}=99.74 \text { torr }
\end{aligned}
$$

\qquad

