

Al-Mustaqbal-College University
Chemical Engineering and Petroleum
Industry Department
Analytical chemistry
First class / first term Lecture one part 1

> By

Asst. lect. Ban Ali Hassan

Lecture one

Solutions : Homogenous mixture for two or more substances, one of them called solute and the other one is the solvent .
\# The solute is an active substance in reaction and the solvent is active.
\# There are many solutions formed by dissolving gasses in liquids like CO_{2} in water.
\# Homogenous solution : A partial homogenous mixing for two or more substances that will not react chemically with each other.
\# Heterogeneous solution : Represent with suspended and colloidal solution.
\# Aqueous solution : is the solution in which water is the solvent. \# Non-aqueous solution : when the solvent is any substance except water.

Classification of solutions are depends upon:

a) nature of molecules (or the volume of atoms or molecules of solute) ,these solutions are :

1) True solution.
2) Suspended solution.
3) Colloidal solution.
b) solute concentration in solution, it can be classified into :
4) saturated solution.
5) unsaturated solution.
6) super saturated solution.

Lecture one

Units of weight and concentration:

Concentration of solution : is the weight of solute dissolved in a given amount (volume or weight) of solvent.

Weight of solute can be expressed by :

1) physical units, e.g. gram(g), milligram(mg), kilogram(kg).
2) chemical units : - includes ,
a) g- atomic weight.
b) g-molecular weight.
c) g - formula weight.
d) g - ionic weight.
e) g-equivalent weight.

Mole : is the summation of the atomic weight in grams for all of the atoms in the chemical formula for the species,.
No. of moles $=\mathrm{Mw}(\mathrm{g}) / \mathrm{M} . \mathrm{wt}(\mathrm{g} / \mathrm{m})$

Lecture one

Methods for the expression of concentration of solutions :

There are several methods for express the concentration of solutions :

1) Molarity (M) : moles of solute contained in one liter of solution or mol/L or $\mathrm{ml} . \mathrm{mol} / \mathrm{ml}$
2) Normality (\mathbf{N}) : number of g-equivalent weight of solute that are contained in a liter of solution.

Example \backslash Calculate the molecular weight of the compound $: \mathbf{F e}(\mathbf{O H})_{3} \cdot \mathbf{1 2} \mathbf{H}_{\mathbf{2}} \mathbf{O}$
Atomic mass of iron $=55.85$
Atomic mass of oxygen $=16$
Hydrogen atomic mass $=1$
These atomic masses can be obtained from the periodic table
Molecular weight $=$ the sum of the atomic mass of each element in the molecular formula X the number of its presence in the formula

Molecular weight of $\left.\left(\mathrm{Fe}(\mathrm{OH})_{3} \cdot 12 \mathrm{H}_{2} \mathrm{O}\right)=\mathbf{5 5 . 5 8}+\mathbf{(1 6 + 1}\right) * \mathbf{3}+\mathbf{1 2}(\mathbf{1} * \mathbf{2 + 1 6})$
$=373.58 \mathrm{amu}$

Lecture one

For example, the molecular formula for hexane $\left(\mathrm{C}_{6} \mathrm{H}_{14}\right)$. There are 6 carbon atoms and 14 hydrogen atoms in each hexane molecule. The atomic weight of Carbon and Hydrogen can be found in the periodic table.

Carbon atomic weight: 12.01
Hydrogen atomic weight: 1.01
Molecular weight $=($ number of C carbon atoms $)($ atomic weight $)+$ (number of H atoms) (H atomic weight)

Molecular weight of hexane $=(6 \times 12.01)+(14 \times 1.01)$

$$
\begin{aligned}
& =72.06+14.14 \\
& =86.20 \mathrm{amu}
\end{aligned}
$$

Example: Find the molecular weight, Mw, of the following

 molecules:N_{2}, NO,
$\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{~N}_{2} \mathrm{O}_{4}$,
$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{~S}$,
CO_{2},
$\mathrm{H}_{2} \mathrm{O}_{2}$,
$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$,
$\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}$,
$\mathrm{MgSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$,
$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$,
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$,
$\mathrm{H}_{2} \mathrm{SO}_{4}$,
$\mathrm{C}_{2} \mathrm{H}_{5}$
$\mathrm{OH}, \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$.

Atomic weight: $(\mathrm{H}=1, \mathrm{C}=12, \mathrm{~N}=14, \mathrm{O}=16, \mathrm{Mg}=24.3, \mathrm{Al}=27, \mathrm{~S}=32.1$, $\mathrm{Ca}=40.1, \mathrm{Zn}=65.4$)

Lecture one

$\mathrm{Mw}_{\mathrm{N}_{2}}=(2 \times 14)=28 \mathrm{amu}$
$\mathrm{Mw}_{\mathrm{N0}}=(14)+(16)=30 \mathrm{amu}$
$\mathrm{Mw}_{\mathrm{C}_{2} \mathrm{H}_{6}}=(2 \times 12)+(6 \times 1)=30 \mathrm{amu}$
$\mathrm{Mw}_{\mathrm{N}, 0_{4}}=(2 \times 14)+(4 \times 16)=92 \mathrm{amu}$
$\mathrm{Mw}_{\mathrm{C}_{8} \mathrm{H}_{\mathrm{H}} \mathrm{O}_{4} \mathrm{~N}, \mathrm{~S}}=(8 \times 12)+(18 \times 1)+(4 \times 16)+(2 \times 14)+(32)=238 \mathrm{amu}$
$\mathrm{Mw}_{\mathrm{CO}_{2}}=(12)+(2 \times 16)=44 \mathrm{amu}$
$\mathrm{Mw}_{\mathrm{H}_{2} 0_{2}}=(2 \times 1)+(2 \times 16)=34 \mathrm{amu}$
$\mathrm{Mw}_{\left.\mathrm{CaNO}_{3}\right)_{2}}=(40.1)+2((14)+(3 \times 16))=164.1 \mathrm{amu}$
$\mathrm{Mw}_{\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}}=(2 \times 27)+3((12)+(3 \times 16))=234 \mathrm{amu}$
$\mathrm{Mw}_{\mathrm{Mg}_{\mathrm{g}} \mathrm{SO}_{4}, 7 \mathrm{H}, 0}=(24.3)+(32.1)+(4 \times 16)+7((2 \times 1)+(16))=246.4 \mathrm{amu}$
$\mathrm{Mw}_{\mathrm{C}_{\mathrm{H}} \mathrm{H}_{\mathrm{N}} \mathrm{N}_{0} 0_{2}}=(8 \times 12)+(10 \times 1)+(4 \times 14)+(2 \times 16)=194 \mathrm{amu}$
$M w_{C_{6} \mathrm{H}_{2} 0_{6}}=(6 \times 12)+(12 \times 1)+(6 \times 16)=180 \mathrm{amu}$
$\mathrm{Mw}_{\mathrm{H}_{2} \mathrm{SO}_{4}}=(2 \times 1)+(32.1)+(4 \times 16)=98.1 \mathrm{amu}$
$\mathrm{Mw}_{\mathrm{C}_{2} \mathrm{H}, \mathrm{HH}}=(2 \times 12)+(5 \times 1)+(16)+(1)=46 \mathrm{amu}$
$\mathrm{Mw}_{\left.\mathrm{ZanNo}_{3}\right)_{2}}=(65.4)+2((14+3 \times 16))=189.4 \mathrm{amu}$

