Conduction-Convection Systems

In heat-exchanger applications a finned-tube arrangement might be used to remove heat from a hot liquid. The heat transfer from the liquid to the finned tube is by convection. The extended-surface problem is a simple application of a conduction-convection systems. Consider the one-dimensional fin exposed to a surrounding fluid at a temperature $T \infty$ as shown in Figure below. The temperature of the base of the fin is T_{0}.

Let $\mathrm{P}=$ perimeter $=2(\mathrm{Z}+\mathrm{t})$

The energy balance on an element of the fin of thickness $d x$ is

Energy in left face $=$ energy out right face + energy lost by convection

$$
\begin{aligned}
\text { Energy in left face } & =q_{x}=-k A \frac{d T}{d x} \\
\text { Energy out right face } & \left.=q_{x+d x}=-k A \frac{d T}{d x}\right]_{x+d x} \\
& =-k A\left(\frac{d T}{d x}+\frac{d^{2} T}{d x^{2}} d x\right)
\end{aligned}
$$

Energy lost by convection $=h P d x\left(T-T_{\infty}\right)$

$$
\therefore \quad-k A \frac{d T}{d x}=-k A\left[\frac{d T}{d x}+\frac{d^{2} T}{d x^{2}} d x\right]+h P d x\left(T-T_{\infty}\right), \quad \div d x \Rightarrow
$$

$$
\begin{gathered}
\frac{d^{2} T}{d x^{2}}-\frac{h P}{k A}\left(T-T_{\infty}\right)=0 \\
\text { let } \theta=T-T_{\infty}, \frac{d T}{d x}=\frac{d \theta}{d x} \Rightarrow \\
\frac{d^{2} T}{d x^{2}}=\frac{d^{2} \theta}{d x^{2}}
\end{gathered}
$$

Let $\boldsymbol{m}^{2}=\boldsymbol{h P} / \boldsymbol{k} \boldsymbol{A}$

$$
\frac{d^{2} \theta}{d x^{2}}-m^{2} \theta=0
$$

$$
D^{2}-1=0 \Rightarrow D= \pm 1
$$

\therefore The roots of the equation above are:

$$
m_{1}=+1, \quad m_{2}=-1
$$

The general solution is

$$
\theta=C_{1} e^{-m x}+C_{2} e^{m x}
$$

Several cases may be considered:
CASE 1: The fin is very long.
B.C. 1
at $x=0 \quad T=T_{0} \quad \theta=\theta_{0}$
B.C. 2
at $x=\infty \quad T=T_{\infty} \quad \theta=0$
By applying the boundary conditions on the general equation above, we get

$$
\frac{\theta}{\theta_{0}}=\frac{T-T_{\infty}}{T_{0}-T_{\infty}}=e^{-m x}
$$

CASE 2: The end of the fin is insulated so that $d T / d x=0$ at $x=L$.
B.C. 1
B.C. 2

$$
\text { at } x=0 \quad T=T_{0} \quad \theta=\theta_{0}
$$

$$
\text { at } x=L \quad d T / d x=0 \quad d \theta / d x=0
$$

From B.C. 1

$$
\begin{aligned}
\theta_{0} & =C_{1}+C_{2} \Rightarrow C_{1}=\theta_{0}-C_{2} \\
\frac{d T}{d x} & =-m C_{1} e^{-m L}+m C_{2} e^{m L}=0
\end{aligned}
$$

Subs. B.C. 1 in B.C.2, we get

$$
C_{2}=\frac{\theta_{0} e^{-m L}}{e^{m L}+e^{-m L}} \Rightarrow C_{1}=\theta_{0}-\frac{\theta_{0} e^{-m L}}{e^{m L}+e^{-m L}}
$$

Subs. $\mathrm{C}_{1} \& \mathrm{C}_{2}$ in the general equation, we obtain

$$
\begin{aligned}
\frac{\theta}{\theta_{0}} & =\frac{e^{-m x}}{1+e^{-2 m L}}+\frac{e^{m x}}{1+e^{2 m L}} \\
& =\frac{\cosh [m(L-x)]}{\cosh m L}
\end{aligned}
$$

CASE 3: The fin is of finite length and loses heat by convection from its end.
B.C. 1
at $x=0 \quad T=T_{0} \quad \theta=\theta_{0}$
B.C. 2
at $x=L \quad-k \frac{d \theta}{d x}=h \theta$

From B.C. 1

$$
\theta_{0}=C_{1}+C_{2} \Rightarrow C_{1}=\theta_{0}-C_{2}
$$

From B.C. 2

$$
-k\left(-m C_{1} e^{-m L}+m C_{2} e^{m L}\right)=h\left(C_{1} e^{-m L}+C_{2} e^{m L}\right)
$$

By applying $\mathrm{C}_{1} \& \mathrm{C}_{2}$ in the general equation, we get,

$$
\frac{\theta}{\theta_{0}}=\frac{T-T_{\infty}}{T_{o}-T_{\infty}}=\frac{\cosh m(L-x)+(h / m k) \sinh m(L-x)}{\cosh m L+(h / m k) \sinh m L}
$$

Calculation of Heat Lost by the Fin

The heat lost by the fin can be calculated either by

$$
\left.q=-k A \frac{d T}{d x}\right]_{x=0}
$$

or by

$$
q=\int_{0}^{L} h P\left(T-T_{\infty}\right) d x=\int_{0}^{L} h P \theta d x
$$

FOR CASE 1:

$$
\begin{gathered}
\frac{\theta}{\theta_{0}}=e^{-m x}, \quad \frac{d \theta}{d x}=-m \theta_{0} e^{-m x},\left.\quad \frac{d \theta}{d x}\right|_{x=0}=-m \theta_{0} \\
\therefore-k A\left(-m \theta_{0}\right)=k A m \theta_{0}, \text { For } q=k A \sqrt{\frac{h P}{k A}} \theta_{0} \Rightarrow \\
q=\sqrt{h P k A} \theta_{0}
\end{gathered}
$$

FOR CASE 2:

$$
\begin{gathered}
\frac{\theta}{\theta_{0}}=\frac{\cosh [m(L-x)]}{\cosh m L}, \frac{d \theta}{d x}=\theta_{0}\left(\frac{-m e^{-m x}}{1+e^{-2 m x}}+\frac{m e^{m x}}{1+e^{2 m x}}\right) \\
\left.\frac{d \theta}{d x}\right|_{x=0}=\theta_{0} m\left(\frac{1}{1+e^{2 m x}}-\frac{1}{1+e^{-2 m x}}\right) \Rightarrow \frac{d \theta}{d x}=\theta_{0} m\left(-\frac{e^{m L}-e^{-m L}}{e^{m x}+e^{-m L}}\right) \\
\therefore \quad q=-k A \theta_{0} m\left(-\frac{e^{m L}-e^{-m L}}{e^{m x}+e^{-m L}}\right) \Rightarrow \\
q=\sqrt{h P k A} \theta_{0} \tanh m L
\end{gathered}
$$

FOR CASE 3:

$$
\frac{\theta}{\theta_{0}}=\frac{T-T_{\infty}}{T_{o}-T_{\infty}}=\frac{\cosh m(L-x)+(h / m k) \sinh m(L-x)}{\cosh m L+(h / m k) \sinh m L}
$$

The heat flow for this case is

$$
q=\sqrt{h P k A} \theta_{0} \frac{\sinh m L+(h / m k) \cosh m L}{\cosh m L+(h / m k) \sinh m L}
$$

