

Al-Mustaqbal-College University Chemical Engineering and Petroleum Industry Department Analytical chemistry First class / first term Lecture Three part 2

By

Asst. lect. Ban Ali Hassan

3.4 The Equilibrium Constant

For a reaction: $aA + bB \leftrightarrow cC + d$

equilibrium constant:

 $\mathsf{K} = \frac{[\mathsf{C}]^{\mathsf{c}}[\mathsf{D}]^{\mathsf{d}}}{[\mathsf{A}]^{\mathsf{a}}[\mathsf{B}]^{\mathsf{b}}}$

The **equilibrium constant, Kc,** is the ratio of the equilibrium concentrations of products over the equilibrium concentrations of reactants each raised to the power of their stoichiometric coefficients.

What Does the Value of K Mean?

*When $10^{-3} < K < 10^3$, the reaction is considered to contain a significant amount of both reactants and products at equilibrium.

Note : if K > 1 the reaction is forward (product to right) If K < 1 the reaction is reverse (reactant to left)

3.4.1Calculating Equilibrium Concentrations

Use ICE Tables To Solve Equilibrium Problems For Kc Or Equilibrium Amounts:

1. I = initial concentration: Initial concentration of reactants are usually given; initial [Product]'s are assumed to be 0 unless otherwise specified.

2. C = **change in concentration**: Assign change as the variable x; use the stoichiometry of the reaction to assign changes for all species.

3. E = equilibrium concentration: E = I + C

Example 1 \\ In an analysis of the following reaction at 100°C

$Br_{2(g)} + Cl_{2(g)} \leftrightarrow 2BrCl_{(g)}$

the equilibrium concentrations are $[Br_2] = 2.3 \times 10^{-3} M$, $[Cl_2] = 1.2 \times 10^{-2} M$, $[BrCl] = 1.4 \times 10^{-2} M$. Write the equilibrium expression and calculate Kc for this reaction.

Solution:

 $K_{c} = \frac{[BrCL]^{2}}{[Br]_{2}[Cl]_{2}}$ $K_{c} = \frac{[1.4 \times 10^{-2}]^{2}}{[2.3 \times 10^{-3}][1.2 \times 10^{-2}]} = 7.1$

Example 2\\ The chemicals A and B react as follows to produce C and D: $A + B \leftrightarrow C + d$, $K = \frac{[D][C]}{[A][B]}$, The equilibrium constant K has a value of 0.30. Assume 0.20 mol of A and 0.50 mol of B are dissolved in 1.00 L, and the reaction proceeds. Calculate the concentrations of reactants and products at equilibrium. Solve :

	[A]	[B]	[C]	[D]
Initial	0.20	0.50	0	0
Change ($x = mmol/mL$ reacting)	- <i>x</i>	- <i>x</i>	+x	+x
Equilibrium	0.20 - x	0.50 - x	x	x

We can substitute these values in the equilibrium constant expression and solve for x.

$$K = \frac{[D][C]}{[A][B]}$$

$$0.3 = \frac{(x)(x)}{(0.2-x)(0.5-x)}$$

$$x^{2} = (0.10 - 0.70x + x^{2})0.30$$

$$0.70x^{2} + 0.21x - 0.030 = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

= $\frac{-0.21 \pm \sqrt{(0.21)^2 - 4(0.70)(-0.030)}}{2(0.70)}$
= $\frac{-0.21 \pm \sqrt{0.044 + 0.084}}{1.40} = 0.11 M$
[A] = $0.20 - x = 0.09M$
[B] = $0.50 - x = 0.39M$
[C] = [D] = $x = 0.11M$

Example 3\\ Determine the initial concentration of HI if the initial concentrations of H₂ and I₂ are both 0.10 *M* and their equilibrium concentrations are both 0.043 *M* at 430°C. The value of Kc = 54.3

$$H_{2(g)} + I_{2(g)} \leftrightarrow 2HI_{(g)}$$

Solution:

	H ₂ (g) +	$I_2(g) \rightleftharpoons$	2HI(g)
Initial	0.10	0.10	У
Change	-X	-X	+2x
Equilibrium	0.043	0.043	y + 2x

First solve for x: 0.10 - x = 0.043; x = 0.057Then solve for y: at equilibrium we have $K_c = 54.3 = \frac{[\text{HI}]^2}{[\text{H}_2][\text{I}_2]} = \frac{(y + 0.114)^2}{(0.043)(0.043)}$ $(y + 0.114)^2 = (54.3)(0.043)^2 \Rightarrow y = \sqrt{(54.3)(0.043)^2} - 0.114 = 0.203$

Example 4\\ A closed system initially containing 1×10^{-3} M H₂ and 2×10^{-3} M I_2 at 448°C is allowed to reach equilibrium. Analysis of the equilibrium mixture shows that the concentration of HI is 1.87 x 10⁻³ M. Calculate Kc at 448°C for the reaction taking place, which is : $H_{2(g)} + I_{2(g)} \leftrightarrow 2HI_{(g)}$ solve : 1) H_2 2HI 2 1 * 10⁻³ 2 *10⁻³ 0 initial change **1.87** * 10⁻³ equilibrium 2) $\begin{array}{ccc} H_2 & I_2 \\ 1^{*}10^{-3} & 2^{*}10^{-3} \end{array}$ 2HI initial 0 change -X -X +2X equilibrium 1*10⁻³ –X 1*10⁻³ –X 1.87*10⁻³ $0+2X = 1.87 \times 10^{-3} \longrightarrow X = 9.35 \times 10^{-4} M = [HI]$ 3) $\begin{array}{c} \bullet \mathbf{J} & \mathbf{H}_2 \\ \text{initial} & 1 \times 10^{-3} \\ \bullet \mathbf{h}_2 \end{array}$ Ι₂ 2 * 10⁻³ 2HI **5**) H_2 I_2 **2HI**initial $1 * 10^{-3}$ $2 * 10^{-3}$ 0change $-9.35 * 10^{-4}$ $-9.35 * 10^{-4}$ $1.87 * 10^{-3}$ equilibrium $1*10^{-3} - 9.35 * 10^{-4}$ $1.87 * 10^{-3} - 9.35 * 10^{-4}$ $1.87 * 10^{-3}$ $[H_2] = 1*10-3 - 9.35 *10^{-4} = 6.5 * 10^{-5} M$ $[I_2] = 1.87 * 10^{-3} - 9.35 * 10^{-4} = 1.065 * 10^{-3} M$ $[HI]^2$ [9.35 *10⁻⁴]² K = ----- ⇒ ----- = 51 $[H_2] [I_2] [6.5 * 10^{-5}] [1.065 * 10^{-3}]$