

Al-Mustaqbal-College University
Chemical Engineering and Petroleum
Industry Department
Analytical chemistry
First class / first term Lecture Three part 2

By

Asst. lect. Ban Ali Hassan

Lecture three

3.4 The Equilibrium Constant

For a reaction: $\mathrm{aA}+\mathrm{bB} \leftrightarrow \mathrm{cC}+\mathrm{d}$
equilibrium constant: $K=\frac{[C][]^{c}[D]^{d}}{[A]^{d}[B]^{b}}$
The equilibrium constant, $\mathbf{K c}$, is the ratio of the equilibrium concentrations of products over the equilibrium concentrations of reactants each raised to the power of their stoichiometric coefficients.

What Does the Value of K Mean?

- If $K \gg 1$, the reaction is product-favored;
 product predominates at equilibrium.
- If $K \ll 1$, the reaction is reactant-favored; reactant predominates at equilibrium.
$K \ll 1$, equilibrium "lies to the left"
*When $10^{-3}<K<10^{3}$, the reaction is considered to contain a significant amount of both reactants and products at equilibrium.

Note: if $K>1$ the reaction is forward (product to right) If $K<1$ the reaction is reverse (reactant to left)

3.4.1Calculating Equilibrium Concentrations

Use ICE Tables To Solve Equilibrium Problems For Kc Or Equilibrium Amounts:

1. I = initial concentration: Initial concentration of reactants are usually given; initial [Product]'s are assumed to be 0 unless otherwise specified.
2. $\mathbf{C}=$ change in concentration: Assign change as the variable x; use the stoichiometry of the reaction to assign changes for all species.
3. $E=$ equilibrium concentration: $E=I+C$

Lecture three

Example 1 $\backslash \mathrm{In}$ an analysis of the following reaction at $100^{\circ} \mathrm{C}$

$\mathrm{Br}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{BrCl}_{(\mathrm{g})}$

the equilibrium concentrations are $\left[\mathrm{Br}_{2}\right]=2.3 \times 10^{-3} \mathrm{M},\left[\mathrm{Cl}_{2}\right]=1.2 \times 10^{-2} \mathrm{M}$, $[\mathrm{BrCl}]=1.4 \times 10^{-2} \mathrm{M}$. Write the equilibrium expression and calculate Kc for this reaction.
Solution:
$\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{BrCL}]^{2}}{[\mathrm{Br}]_{2}[\mathrm{Cl}]_{2}}$
$\mathrm{K}_{\mathrm{c}}=\frac{\left[1.4 \times 10^{-2}\right]^{2}}{\left[2.3 \times 10^{-3}\right]\left[1.2 \times 10^{-2}\right]}=7.1$
Example $2 \backslash$ The chemicals A and B react as follows to produce C and D : $A+B \leftrightarrow C+d, K=\frac{[D][C]}{[A][B]}$, The equilibrium constant K has a value of 0.30 . Assume 0.20 mol of A and 0.50 mol of B are dissolved in 1.00 L , and the reaction proceeds. Calculate the concentrations of reactants and products at equilibrium.
Solve :

	$[\mathrm{A}]$	$[\mathrm{B}]$	$[\mathrm{C}]$	$[\mathrm{D}]$
Initial	0.20	0.50	0	0
Change $(x=\mathrm{mmol} / \mathrm{mL}$ reacting $)$	$-x$	$-x$	$+x$	$+x$
Equilibrium	$0.20-x$	$0.50-x$	x	x

We can substitute these values in the equilibrium constant expression and solve for x.
$\mathbf{K}=\frac{[\boldsymbol{D}][\mathrm{C}]}{[\mathbf{A}][\mathbf{B}]}$
$0.3=\frac{(x)(x)}{(0.2-x)(0.5-x)}$
$x^{2}=\left(0.10-0.70 x+x^{2}\right) 0.30$
$0.70 x^{2}+0.21 x-0.030=0$

Lecture three

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-0.21 \pm \sqrt{(0.21)^{2}-4(0.70)(-0.030)}}{2(0.70)} \\
& =\frac{-0.21 \pm \sqrt{0.044+0.084}}{1.40}=0.11 \mathrm{M}
\end{aligned}
$$

$[\mathrm{A}]=0.20-\mathrm{x}=0.09 \mathrm{M}$
$[\mathrm{B}]=0.50-\mathrm{x}=0.39 \mathrm{M}$
$[\mathrm{C}]=[\mathrm{D}]=\mathrm{x}=0.11 \mathrm{M}$

Example 3
 Determine the initial concentration of HI if the initial concentrations of H_{2} and I_{2} are both 0.10 M and their equilibrium concentrations are both 0.043 M at $430^{\circ} \mathrm{C}$. The value of $\mathrm{Kc}=54.3$
$\mathbf{H}_{\mathbf{2}(\mathrm{g})}+\mathbf{I}_{\mathbf{2}(\mathrm{g})} \leftrightarrow \mathbf{2 H I}_{(\mathrm{g})}$

Solution:

	$\mathrm{H}_{2}(g)+$	$\mathrm{I}_{2}(g) \rightleftharpoons$	$2 \mathrm{HI}(g)$
Initial	0.10	0.10	y
Change	-x	-x	+2 x
Equilibrium	0.043	0.043	$\mathrm{y}+2 \mathrm{x}$

First solve for $\mathrm{x}: \quad 0.10-\mathrm{x}=0.043 ; \mathrm{x}=0.057$
Then solve for y : at equilibrium we have
$K_{c}=54.3=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}=\frac{(y+0.114)^{2}}{(0.043)(0.043)}$
$(y+0.114)^{2}=(54.3)(0.043)^{2} \Rightarrow y=\sqrt{(54.3)(0.043)^{2}}-0.114=0.203$

Lecture three

Example 4
 A closed system initially containing $1 \times 10^{-3} \mathrm{M} \mathrm{H} \mathrm{H}_{2}$ and $2 \times 10^{-3} \mathrm{M}$ I_{2} at $448^{\circ} \mathrm{C}$ is allowed to reach equilibrium. Analysis of the equilibrium mixture shows that the concentration of HI is $1.87 \times 10^{-3} \mathrm{M}$. Calculate Kc at $448^{\circ} \mathrm{C}$ for the reaction taking place, which is $: \quad \mathbf{H}_{\mathbf{2}(\mathrm{g})}+\mathbf{I}_{\mathbf{2}(\mathrm{g})} \leftrightarrow \mathbf{2} \mathrm{HI}_{(\mathrm{g})}$ solve :
1)
initial
change
equilibrium

1 * 10^{-3}

$2 * 10^{-3}$
I_{2}

2HI
0
2)
initial change equilibrium

$1^{*} 10^{-3}-X$

