## Electromagnetic waves

## Lecture 1

## Vector

Araa Hassan

Tow stage
Department of medical physics Al-Mustaqbal University-College

## 1-Vector Analysis and Vector Algebra

1-1 Vector is a quantity having both magnitude and direction such as displacement, velocity, force and acceleration.

Example1
Write the vector for each of the following:
a. of the vector $(1,-3,-5)$ to $(2,-7,0)$.
b . of the vector $(2,-7,0)$ to) $1,-3,-5)$.
c. The location vector to (4,90.(- .)
solution
$\mathrm{a}\langle-1,4,-5\rangle \mathrm{b}\langle 1,-4,5\rangle$
The two vectors in a and b are different in sign only, and this shows that they have the same magnitude, but they are opposite direction.
c〈-90,4〉

## 1-2 Vector Algebra

Laws of vector algebra. If $\mathrm{A}, \mathrm{B}$ and C are vectors and m and n are scalars, then

1. $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$ Commutative Law for Addition
2. $A+(B+C)=(A+B)+C$ Associative Law for Addition
3. $\mathrm{mA}=\mathrm{Am}$ Commutative Law for Multiplication
4. $\mathrm{m}(\mathrm{nA})=(\mathrm{mn})$ A Associative Law for Multiplication
5. $(\mathrm{m}+\mathrm{n}) \mathrm{A}=\mathrm{mA}+\mathrm{nA}$ Distributive Law
6. $m(A+B)=m A+m B$ Distributive Law

## Example:

Let us take $\mathrm{A}=10$ and $\mathrm{B}=5$
$10+5=5+10$
$15=15$

## Example:

Prove:- $(3+7)=(-3)+(-7)$

## Proof:

$-(10)=-3-7$
$-10=-10$

## L.H.S = R.H.S

Example:
Let us take $\mathrm{A}=2, \mathrm{~B}=4$ and $\mathrm{C}=6$
L.H.S $=\mathrm{A}+(\mathrm{B}+\mathrm{C})=2+(4+6)$
$=12$
R.H.S $=(\mathrm{A}+\mathrm{B})+\mathrm{C}=(2+4)+6$
$=12$

## L.H.S = R.H.S

$12=12$

## Example:

Let us take $\mathrm{A}=2, \mathrm{~B}=3$ and $\mathrm{C}=5$
L.H.S $=A \times(B+C)=2 \times(3+5)$
$=2 \times 8$
$=16$
R.H.S $=\mathrm{A} \times \mathrm{B}+\mathrm{A} \times \mathrm{C}=2 \times 3+2 \times 5$
$=6+10$
$=16$

## L.H.S = R.H.S

$16=16$
Example
$\mathrm{A}=4, \mathrm{~m}=5$
$\mathrm{mA}=\mathrm{Am}$
$5 \times 4=4 \times 5$
$20=20$

## Example

$\mathrm{A}=5$
$\mathrm{m}=3$
$\mathrm{n}=2$
$\mathrm{m}(\mathrm{nA})=(\mathrm{mn}) \mathrm{A}$
$3(2 \times 5)=(3 \times 2) 5$
$3 \times 10=6 \times 5$
$30=30$

## 1-3 Scalar product

The process of multiplying a vector quantity by another vector quantity, the product of which is a non-vector scalar quantity, which has only an amount..

- The dot product of two vectors is given by the formula $\vec{a} \cdot \vec{b}=|a||b| \cos (\theta)$.


## 1-3-1 The following laws are valid:

1. A. B = B . A Commutative Law for Dot Products
2. $\mathrm{A} \cdot(\mathrm{B}+\mathrm{C})=\mathrm{A} \cdot \mathrm{B}+\mathrm{A} \cdot \mathrm{C}$ Distributive Law
3. $\mathrm{m}(\mathrm{A} \cdot \mathrm{B})=(\mathrm{mA}) \cdot \mathrm{B}=\mathrm{A} \cdot(\mathrm{m} \mathrm{B})=(\mathrm{A} \cdot \mathrm{B}) \mathrm{m}$, where mis a scalar.
4. i. $\mathrm{i}=\mathrm{j} . \mathrm{j}=\mathrm{k} . \mathrm{k}=1, \mathrm{i} . \mathrm{j}=\mathrm{j} . \mathrm{k}=\mathrm{k} . \mathrm{i}=0$
5. If $\mathrm{A}=\mathrm{A} 1 \mathrm{i}+\mathrm{A} 2 \mathrm{j}+\mathrm{A} 3 \mathrm{k}$ and $\mathrm{B}=\mathrm{B} 1 \mathrm{i}+\mathrm{B} 2 \mathrm{j}+\mathrm{B} 3 \mathrm{k}$, then
$\mathrm{A} . \mathrm{B}=\mathrm{A} 1 \mathrm{~B} 1+\mathrm{A} 2 \mathrm{~B} 2+\mathrm{A} 3 \mathrm{~B} 3$
$\mathrm{A} . \mathrm{A}=\mathrm{A} 2=\mathrm{A} 12+\mathrm{A} 22+\mathrm{A} 32$
$\mathrm{B} \cdot \mathrm{B}=\mathrm{B} 2=\mathrm{B} 12+\mathrm{B} 22+\mathrm{B} 32$
6. If $\mathrm{A} . \mathrm{B}=0$ and A and B are not null vectors, then A and $B$ are perpendicular.

Example: Find the scalar product of the vectors $\mathrm{a}=2 \mathrm{i}+$ $3 \mathrm{j}-6 \mathrm{k}$ and $\mathrm{b}=\mathrm{i}+9 \mathrm{k}$.

Solution: To find the scalar product of the given vectors a and b , we will multiply their corresponding components.
$a \cdot b=(2 i+3 j-6 k) \cdot(i+0 j+9 k)$
$=2.1+3.0+(-6) .9$
$=2+3-54$
$=-49$
Example: Calculate the scalar product of vectors a and b when the modulus of a is 9 , modulus of b is 7 and the angle between the two vectors is $60^{\circ}$.

Solution: To determine the scalar product of vectors a and $b$, we will use the scalar product formula.
$a . b=|a||b| \cos \theta$
$=9 \times 7 \cos 60^{\circ}$
$=63 \times 1 / 2$
$=31.5$
Example 1: Find the angle between the two vectors $2 \mathrm{i}+$ $3 \mathrm{j}+\mathrm{k}$, and $5 \mathrm{i}-2 \mathrm{j}+3 \mathrm{k}$.

## Solution:

The two given vectors are:

$$
\begin{aligned}
& \vec{a}=2 i+3 i+k, \text { and } \vec{b}=5 i-2 j+3 k \\
& |a|=\sqrt{2^{2}+3^{2}+1^{2}}=\sqrt{4+9+1}=\sqrt{14} \\
& |b|=\sqrt{5^{2}+(-2)^{2}+3^{2}}=\sqrt{25+4+9}=\sqrt{38}
\end{aligned}
$$

Using the dot product we have $\vec{a} \cdot \vec{b}=2 \cdot(5)+3 \cdot(-2)+1 \cdot(3)=10$
$-6+3=7$
$\operatorname{Cos} \theta=\frac{a \cdot b}{|a| \cdot|b|}$
$=\frac{7}{\sqrt{14} \cdot \sqrt{38}}$
$=\frac{7}{2 . \sqrt{7 \times 19}}$
$=\frac{7}{2 \sqrt{133}}$
$\theta=\operatorname{Cos}^{-1} \frac{7}{2 \sqrt{133}}$
$\theta=\operatorname{Cos}^{-1} \mathrm{O} .304=72.3^{\circ}$

## 1-4 Vector products

The process of multiplying a vector quantity by another vector quantity, the product of which is a vector quantity with magnitude and direction.

- The cross product of two vectors is given by the formula $\vec{a} \times \vec{b}=|a||b| \sin (\theta)$.


## Cross or vector product

## 1-4-1 The following laws are valid:

1. $\mathrm{A} \times \mathrm{B}=-\mathrm{B} \times \mathrm{A}$ Commutative Law for Cross Products Fails
2. $\mathrm{A} \times(\mathrm{B}+\mathrm{C})=\mathrm{A} \times \mathrm{B}+\mathrm{A} \times \mathrm{C}$ Distributive Law
3. $\mathrm{m}(\mathrm{A} \times \mathrm{B})=(\mathrm{mA}) \times \mathrm{B}=\mathrm{A} \times(\mathrm{mB})=(\mathrm{A} \times \mathrm{B}) \mathrm{m}$, where m is a scalar.
4. $\mathrm{i} \times \mathrm{i}=\mathrm{j} \times \mathrm{j}=\mathrm{k} \times \mathrm{k}=0$,
$\mathrm{i} \times \mathrm{j}=-\mathrm{j} \times \mathrm{i}=\mathrm{k}$,
$\mathrm{j} \times \mathrm{k}=-\mathrm{k} \times \mathrm{j}=\mathrm{i}$,
$\mathrm{k} \times \mathrm{i}=-\mathrm{i} \times \mathrm{k}=\mathrm{j}$.
5. If $\mathrm{A}=\mathrm{A} 1 \mathrm{i}+\mathrm{A} 2 \mathrm{j}+\mathrm{A} 3 \mathrm{k}$ and $\mathrm{B}=\mathrm{Bl} \mathrm{i}+\mathrm{B} 2 \mathrm{j}+\mathrm{B} 3 \mathrm{k}$, then
6. The magnitude of $\mathrm{A} \times \mathrm{B}$ is the same as the area of a parallelogram with sides A and B .
7. If $A \times B=0$ and $A$ and $B$ are not null vectors, then $A$ and B are parallel.

Example: Find the cross product of two vectors $\vec{a}=(3,4,5)$ and $\vec{b}=(7,8,9)$

## Solution:

The cross product is given as,

$$
\begin{aligned}
& \quad \begin{array}{lrl}
\hat{i} & \hat{j} & \hat{k} \\
3 & 4 & 5 \\
7 & 8 & 9
\end{array} \\
& =[(4 \times 9)-(5 \times 8)] \hat{i}-[(3 \times 9)-(5 \times 7)] \hat{j}+[(3 \times 8)-(4 \times 7)] \hat{k} \\
& =(36-40) \hat{i}-(27-35) \hat{j}+(24-28) \hat{k}=-4 \hat{i}+8 \hat{j}-4 \hat{k}
\end{aligned}
$$

Example: Two vectors have their scalar magnitude as $|a|=2 \sqrt{ } 3$ and $|b|=4$, while the angle between the two vectors is $60^{\circ}$.

Calculate the cross product of two vectors.

## Solution:

We know that $\sin 60^{\circ}=\sqrt{ } 3 / 2$
The cross product of the two vectors is given by, $\vec{a} \times \vec{b}=$ $|a||b| \sin (\theta) \hat{n}=2 \sqrt{ } 3 \times 4 \times \sqrt{3} / 2=12 \hat{n}$

Example If $\vec{a}=(2,-4,4)$ and $\vec{b}=(4,0,3)$, find the angle between them.

## Solution

$$
\begin{aligned}
& \vec{a}=2 i-4 j+4 k \\
& \vec{b}=4 i+0 j+3 k
\end{aligned}
$$

The magnitude of $\vec{a}$ is
$|a|=\sqrt{ }\left(2^{2}+4^{2}+4^{2}\right)=\sqrt{ } 36=6$
The magnitude of $\vec{b}$ is

$$
|b|=\sqrt{ }\left(4^{2}+0^{2}+3^{2}\right)=\sqrt{ } 25=5
$$

As per the cross product formula, we have

$$
\begin{aligned}
\vec{a} \times \vec{b} & =\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & -4 & 4 \\
4 & 0 & 3
\end{array} \\
& =[(-4 \times 3)-(4 \times 0)] \hat{i} \\
- & {[(3 \times 2)-(4 \times 4)] \hat{j} } \\
+ & {[(2 \times 0)-(-4 \times 4)] \hat{k} } \\
& =-12 \hat{i}+10 \hat{j}+16 \hat{k}
\end{aligned}
$$

$$
\vec{a} \times \vec{b}=(-12,10,16)
$$

The length of the $\vec{c}$ is

$$
\begin{aligned}
& |c|=\sqrt{ }\left(-(12)^{2}+10^{2}+16^{2}\right) \\
& =\sqrt{ }(144+100+256) \\
& =\sqrt{ } 500 \\
& =10 \sqrt{ } 5 \\
& \vec{a} \times \vec{b}=|a||b| \sin \theta
\end{aligned}
$$

$$
\sin \theta=\frac{\vec{a} \times \vec{b}}{|a||b|}
$$

$$
\sin \theta=10 \sqrt{ } 5 /(5 \times 6)
$$

$$
\sin \theta=\sqrt{5} / 3
$$

$$
\theta=\sin ^{-1}(\sqrt{ } 5 / 3)
$$

$$
\theta=\sin ^{-1}(0.74)
$$

$$
\theta=48^{\circ}
$$

