

E-mail: mahmoodshaker@uomus.edu.iq

2 Convection Heat Transfer.

It is well known that a hot plate of metal will cool faster when placed in front of a fan than when exposed to still air. We say that the heat is convected away, and we call the process convection heat transfer.

* Fig 1-7 : convection H.T. from a Plate.

E-mail: mahmoodshaker@uomus.edu.iq

EXAMPLE 1-2

Air at 20°C blows over a hot plate 50 by 75 cm maintained at 250°C. The convection heat-transfer coefficient is 25 W/m²·°C. Calculate the heat transfer.

Soly = Find
$$f^{\circ\circ}$$
 $A=0.5 \times 0.75$, $h=25$, $T_{\omega}=250^{\circ}$, $T_{\omega}=20^{\circ}$
 $f=hA(T_{\omega}-T_{\omega}) \Rightarrow f=25 \times 0.5 \times 0.75$ (250-20)

EXAMPLE 1-4

An electric current is passed through a wire 1 mm in diameter and 10 cm long. The wire is submerged in liquid water at atmospheric pressure, and the current is increased until the water boils. For this situation $h = 5000 \text{ W/m}^2 \cdot {}^{\circ}\text{C}$, and the water temperature will be 100°C . How much electric power must be supplied to the wire to maintain the wire surface at 114°C ?

Soly: Find ?,
$$D=1 \text{ Hm}$$
, $L=10 \text{ cm}$, $h=5000 \text{ W}$
 $\Rightarrow P = hA (Tw-Tw)$
 $A=7dL = 7 \times 0.000 \times 0.1 = 3.142 \times 10^{-4} \text{ m}^2$
 $\Rightarrow P = 5000 \times 3.442 \times 10^{-4} \times (114-100)$
 $P = 21.994 \text{ W} = Electric power must be applied}$

* Convection in a channel

$$Q = m$$
 (ie - it) = m Di
 $\Delta i = CP \Delta T = CP (Te-Ti)$
 $i \rightarrow enthology$.
 $m \rightarrow Plub mass flow rate Kg/s$

Figure 1-8 | Convection in a channel.

P. 1-16

Water flows at the rate of 0.5 kg/s in a 2.5-cm-diameter tube having a length of 3 m. A constant heat flux is imposed at the tube wall so that the tube wall temperature is 40°C higher than the water temperature. Calculate the heat transfer and estimate the temperature rise in the water. The water is pressurized so that boiling cannot occur.

Soly : Find
$$Q$$
? Q (Te-Ti)

 $h \to from Table 1.3.$ $\Longrightarrow h = 3500 \text{ W/m2.K}$
 $Q = hA(Tw-Tw) = hAdl(Tw-Tw)$
 $Q = 3500 \times 7 \times 0.025 \times 3 \times 40 \Longrightarrow Q = 32.9867 \text{ KW}$

2
$$g = m$$
 (P (Te-Ti)

Te-Ti = $\frac{2}{m} = \frac{32986.7}{0.5 \times 4186} = 15.76$ °C

P. 1-23 A flat wall is exposed to an environmental temperature of 38°C. The wall is covered with a layer of insulation 2.5 cm thick whose thermal conductivity is 1.4 W/m·°C, and the temperature of the wall on the inside of the insulation is 315°C. The wall loses heat to the environment by convection. Compute the value of the convection heat-transfer coefficient that must be maintained on the outer surface of the insulation to ensure that the outer-surface temperature does not exceed 41°C.

P. 1-26 How does the free-convection heat transfer from a vertical plate compare with pure conduction through a vertical layer of air having a thickness of 2.5 cm and a temperature difference the same at $T_w - T_\infty$? Use information from Table 1-3.

Soly == I free convection from vertical plate

$$Q = hA$$
 (Tw-To) = hA ΔT

$$\Rightarrow \text{ from Table 1-3}$$
 $\Rightarrow \text{ from Table 1-3}$

Vertical plate origh high in air $\Rightarrow h = 4.5 \text{ W/m}^2$. (°

 $Q = 4.5 \times (0.3)^2 \times 30 \Rightarrow Q = 12.15 \text{ W}$

-2 conduction through avertical layer of air $\Delta x = 4.5 \text{ cm}$
 $\Delta T = (Tw - To) = 3.0 \text{ c}$
 $\Rightarrow \text{ From table } A = 5$
 $\Rightarrow \text{ From table } A = 5$
 $Q = KA\Delta T = 0.027 \times (0.3)^2 \times 30$
 $\Rightarrow \text{ T(K)} = 278.15 + 30 = 303.15 \text{ Kelvin}$
 $Q = 4.5 \times 4.5 \times 10.027 \times 10.025$
 $\Rightarrow \text{ T(K)} = 278.15 + 30 = 303.15 \text{ Kelvin}$
 $\Rightarrow \text{ T(K)} = 278.15 + 30 = 303.15 \text{ Kelvin}$
 $\Rightarrow \text{ T(K)} = 278.15 + 30 = 303.15 \text{ Kelvin}$
 $\Rightarrow \text{ T(K)} = 278.15 + 30 = 303.15 \text{ Kelvin}$
 $\Rightarrow \text{ T(K)} = 278.15 + 30 = 303.15 \text{ Kelvin}$

E-mail: mahmoodshaker@uomus.edu.iq

[3] Radiation Heat transfer

- opposite to conduction and convection.
 - Radiation may achieved in vacuum.
 - It depends on electro magnetic waves.

*Thermal Ideal radiation.

Black Body Se

- 9 so rate of heat Transfer from a Black Body.
- -6% stefan-Bolfzmann constant 6=5-67 *10-8 W/m2.Ku
- Ass heat Transfer area.
- Too Absolute temp (Kelvin)

P. 1-20 Calculate the energy emitted by a blackbody at 1000°C.

Soly 30
$$2 = 6AT^4 = \frac{2}{A} = 6T^4 = \frac{5.67 \times 10^{-8} \times (1000 + 273.15)^4}{A}$$

$$\frac{2}{A} = 1.4897 \times 16^5 \text{ W/m}^2$$

P.1-21 If the radiant flux from the sun is 1350 W/m², what would be its equivalent blackbody temperature?

Soly so Find T? ,
$$2/A = 54 \times 10^6 \text{ W/m}^2$$

 $T = 4\sqrt{\frac{9}{6A}}$ $\Rightarrow T = 5555 - 23 \text{ K}$

E-mail: mahmoodshaker@uomus.edu.iq

P. 1-13 Two very large parallel planes having surface conditions that very nearly approximate those of a blackbody are maintained at 1100 and 425°C, respectively. Calculate the heat transfer by radiation between the planes per unit time and per unit surface area.

Solves
$$T_1 = 1100^{\circ}C = 1373 \text{ H}$$
 $T_2 = 425^{\circ}C = 698 \text{ H}.$

Find $f_A (W_{M2}) . ?$
 $\frac{2}{A} = 6 (T_1^{4} - T_2^{4}) \Rightarrow \frac{7}{A} = 188 \text{ KW/m}^2$

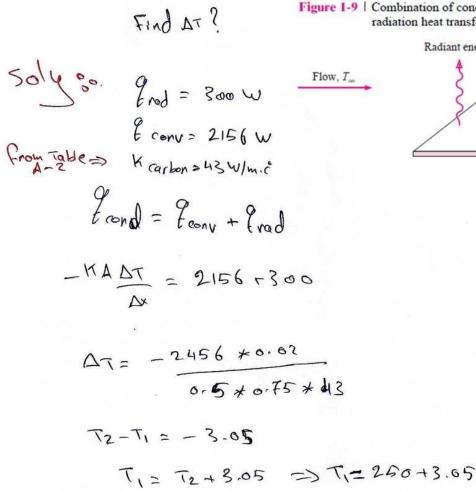
* Radiation in an Enclosure.

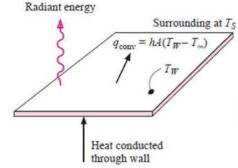
P. 1-19 A small radiant heater has metal strips 6 mm wide with a total length of 3 m. The surface emissivity of the strips is 0.85. To what temperature must the strips be heated if they are to dissipate 2000 W of heat to a room at 25°C?

Soly = wide = 0.006m, length = 3m,
$$E = 6.85$$
, $Q = 2000 \ T_2 = 2988$

$$Q = 6 A E \left(T_1^{4} - T_2^{4} \right) \Rightarrow 2000 = 5.67 \times 16^{-8} \times 0.006 \times 3 \times 0.26 \times \left(T_1^{4} - 200^{6} \right)$$

$$T_1 = 1233 9.7 \text{ K}$$


E-mail: mahmoodshaker@uomus.edu.iq


EXAMPLE 1.3

Assuming that the plate in Example 1-2 is made of carbon steel (1%) 2 cm thick and that 300 W is lost from the plate surface by radiation, calculate the inside plate temperature.

Figure 1-9 | Combination of conduction, convection, and radiation heat transfer.

T,= 25305°C

