Coordinate System

- Used to describe the position of a point in space
- Coordinate System consists of
- A fixed reference point called the origin
- Specific axes with scales and labels
- Instruction on how to label a point relative to the origin and the axes

* Types of Coordinate Systems

- Number line.
- Cartesian coordinate system.
- Polar coordinate system.
- Cylindrical and spherical coordinate systems.
- Homogeneous coordinate system.
- Other commonly used systems.
- Relativistic coordinate systems.

Cartesian Coordinate System

- Also called rectangular Coordinate System
- x - and y - axes intersect at the origin
- Points are labeled (x,y)
- The plural of axis is axes
- Ordered pair (x , y) with x-value first

Example /Determine the following points
a. $(2,3)$
b. $(-5,1)$
c. $(-3,-2)$
d. $(2,-4)$
solution :

* Polar coordinate system

- Origin and reference line are noted.
- Point is distance r from the origin in the direction of angle θ, ccw from reference line.
- Points are labeled (r, θ).

Polar to Cartesian coordinates

$\sin \theta=\frac{y}{r}, \cos \theta=\frac{x}{r}, \tan \theta=\frac{y}{x}$

- Based on forming a right triangle from r and θ.
- $x=r \cos \theta$
- $y=r \sin \theta$

Cartesian to Polar coordinates

- If the Cartesian coordinates are known :
- r is the hypotenuse and θ an angle

$$
\tan \theta=\frac{y}{x}
$$

$$
r=\sqrt{x^{2}+y^{2}}
$$

- θ must be ccw from positive x axis for these equations to be valid

Example : The Cartesian coordinates of a point in the xy
Plane are $(\mathrm{x}, \mathrm{y})=(12,5)$. Fined the polar coordinates of this point .
Solution : from equation

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}} \\
& r=\sqrt{12^{2}+5^{2}} \\
& r=13
\end{aligned}
$$

And from equation ,

$$
\begin{aligned}
& \tan \theta=\frac{y}{x} \\
& \tan \theta=\frac{5}{12} \\
& \tan \theta=12
\end{aligned}
$$

$\theta=? ?$
$\theta=\tan ^{-1}\left(\frac{5}{12}\right)$
$\theta=22,6^{\circ}$

Cylindrical coordinate systems

- There are two common methods for extending the polar coordinate system to three dimensions.
- In the cylindrical coordinate system, a z coordinate with the same meaning as in Cartesian coordinates is added to the r and θ polar coordinates giving a triple $(\mathrm{r}, \theta, \mathrm{z})$.

Convert from Cartesian coordinates to cylindrical coordinates

$(\mathrm{x}, \mathrm{y}, \mathrm{z}) \rightarrow(\mathrm{r}, \theta, \mathrm{z})$
$\theta=\tan ^{-1}\left(\frac{y}{x}\right)$
$z=z$

* Convert from cylindrical coordinates to Cartesian coordinates

$$
\begin{aligned}
& (\mathrm{r}, \theta, \mathrm{z}) \rightarrow(\mathrm{x}, \mathrm{y}, \mathrm{z}) \\
& x=r \cos \theta \\
& y=r \sin \theta \\
& \mathrm{z}=\mathrm{z}
\end{aligned}
$$

Example: Convert from cylindrical coordinates to Cartesian coordinates ($4, \frac{2 \pi}{3},-2$)
Solution : $x=r \cos \theta$

$$
\begin{aligned}
& x=4 \cos \frac{2 \pi}{3} \\
& x=-2 \\
& y=r \sin \theta \\
& y=4 \sin \frac{2 \pi}{3} \\
& y=2 \sqrt{3} \\
& \mathrm{z}=\mathrm{z} \\
& \mathrm{z}=-2 \\
& \mathrm{p}=(-2,2 \sqrt{3},-2)
\end{aligned}
$$

Example: Convert from Cartesian coordinates to cylindrical coordinates $(1,-3,5)$

Solution :

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}} \\
& r=\sqrt{1^{2}+-3^{2}} \\
& r=\sqrt{10} \\
& \theta=\tan ^{-1}\left(\frac{y}{x}\right) \\
& \theta=\tan ^{-1}\left(\frac{-3}{1}\right) \\
& \theta=-1.249 \\
& \theta=-1.249+2 \pi \\
& \theta=5.03 \\
& z=z \\
& z=5 \\
& (r, \theta, z)=(\sqrt{10}, 5.03,5)
\end{aligned}
$$

Homework :

Convert from Cartesian coordinates to polar coordinates $(3,-3,-7)$.

