Lecture 3. /B

Calculation of X-ray wavelengths & frequency

If electrons are accelerated to a velocity \mathbf{v} by a potential difference \mathbf{V} and then allowed to collide with a metal target, the maximum frequency of the X-rays emitted is given by the equation:

 $\frac{1}{2} mv^2 = eV = hf$

Therefore:

X ray frequency (f) = eV/h

 $\downarrow\downarrow\downarrow$

This mathematical formula shows that the maximum frequency is directly proportional to the accelerating voltage.

Example problem

Q/Calculate the minimum wavelength of X-rays emitted when electrons accelerated through 30 kV strike a target.

Answer is:**f** = $[1.6 \times 10^{-19} \times 3 \times 10^{4}]/6.63 \times 10^{-34} = 7.2 \times 10^{18} \text{ Hz}$ Therefore the wavelength

 λ (= c/f) is 0.41 x 10⁻¹⁰ m = 0.04 1 nm (compared with some 600 nm for yellow light)

(Quizzes examination No. 1) Q1/ Calculate the: - 1-maximum energy &

2- minimum wavelength for an x-ray beam generated at 100 kVp.

Answer /

The maximum energy (keV) numerically equals the maximum tube voltage (kVp). Because the maximum tube voltage is 100 kVp, the maximum energy of the photons is 100 keV:

 $\lambda_{min} = \{1.24\} / \{100 \text{ kVp}\}$

λmin=0.0124 *nm*

Q2/

Find the(a) maximum frequency(b) Minimum wavelength of X-rays produced by 30 kV electrons.

The Solutions

(a). Potential of the electrons, V=30kV=3×10⁴V Hence, energy of the electrons, E=3×10⁴ eV Where, $e = Charge \text{ on an electron} = 1.6 \times 10^{-19}C$ Maximum frequency produced by the X-rays is v The energy of the electrons is given by the relation is E=hv Where, $h = Planck's constant = 6.626 \times 10^{-34} Js$ $v=E/h=7.24 \times 10^{-18} Hz$

(b).

Energy of a electron, E=30×10³eV Let Maximum frequency produced by the X-rays be v v=E/h=1.6×10¹⁹×3×10⁴/6.626×10³⁴=7.24×10¹⁸Hz where h is the planck's constant. The minimum wavelength produced by the X-rays is given as- λ =c/v=0.0414nm