Quantum Mechanics

Tenth Lecture

Probability Current Density

Dr. Nasma Adnan

Third Stage
Department of Medical Physics
Al-Mustaqbal University-College
2022-2023

Probability Current Density

* From time depend Schrödinger equation

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x, t)}{\partial x^{2}}+V_{o} \psi(x, t)=i \hbar \frac{\partial \psi(x, t)}{\partial t} \tag{1}
\end{equation*}
$$

* Find the conjugate of the equation

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi^{*}(x, t)}{\partial x^{2}}+V_{o} \psi^{*}(x, t)=-i \hbar \frac{\partial \psi^{*}(x, t)}{\partial t} \tag{2}
\end{equation*}
$$

Now we multiply the eq. (1) by Ψ^{*} and eq. (2) by Ψ produces the following:

$$
-\frac{\hbar^{2}}{2 m} \psi^{*} \frac{\partial^{2} \psi}{\partial x^{2}}+V_{o} \psi \psi^{*}=i \hbar \psi^{*} \frac{\partial \psi}{\partial t}
$$

$$
-\frac{\hbar^{2}}{2 m} \psi \frac{\partial^{2} \psi^{*}}{\partial x^{2}}+V_{o} \psi^{*} \psi=-i \hbar \psi \frac{\partial \psi^{*}}{\partial t}
$$

* By subtracting the above two equations:

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 m} \psi^{*} \frac{\partial^{2} \psi}{\partial x^{2}}+V_{o} \psi \psi^{*}-\left[-\frac{\hbar^{2}}{2 m} \psi \frac{\partial^{2} \psi^{*}}{\partial x^{2}}+V_{o} \psi^{*} \psi\right]=i \hbar \psi^{*} \frac{\partial \psi}{\partial t}-\left[-i \hbar \psi \frac{\partial \psi^{*}}{\partial t}\right] \\
& -\frac{\hbar^{2}}{2 m} \psi^{*} \frac{\partial^{2} \psi}{\partial x^{2}}+V_{o} \psi \psi^{*}+\frac{\hbar^{2}}{2 m} \psi \frac{\partial^{2} \psi^{*}}{\partial x^{2}}-V_{o} \psi^{*} \psi=i \hbar \psi^{*} \frac{\partial \psi}{\partial t}+i \hbar \psi \frac{\partial \psi^{*}}{\partial t} \\
& -\frac{\hbar^{2}}{2 m}\left(\psi^{*} \frac{\partial^{2} \psi}{\partial x^{2}}-\psi \frac{\partial^{2} \psi^{*}}{\partial x^{2}}\right)=i \hbar\left(\psi^{*} \frac{\partial \psi}{\partial t}+\psi \frac{\partial \psi^{*}}{\partial t}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \psi^{*} \frac{\partial \psi}{\partial t}+\psi \frac{\partial \psi^{*}}{\partial t}=\frac{\partial}{\partial t}\left(\psi^{*} \psi\right) \\
& -\frac{\hbar}{2 i m}\left(\psi^{*} \frac{\partial^{2} \psi}{\partial x^{2}}-\psi \frac{\partial^{2} \psi^{*}}{\partial x^{2}}\right)=\frac{\partial}{\partial t}\left(\psi^{*} \psi\right)
\end{aligned}
$$

* Notice between the large brackets in the above equation that we extract a common factor from it $\frac{\partial}{\partial x}$ and as follows:
$-\frac{\partial}{\partial t}\left(\psi^{*} \psi\right)-\frac{\hbar}{2 i m} \frac{\partial}{\partial x}\left(\psi^{*} \frac{\partial \psi}{\partial x}-\psi \frac{\partial \psi^{*}}{\partial x}\right)=0$
$\Rightarrow \quad \frac{\partial}{\partial t}\left(\psi^{*} \psi\right)+\frac{\hbar}{2 i m} \frac{\partial}{\partial x}\left(\psi^{*} \frac{\partial \psi}{\partial x}-\psi \frac{\partial \psi^{*}}{\partial x}\right)=0$
* When comparing the last equation with the fluid flow equation:

$$
\frac{\partial}{\partial t} p(x)+\frac{\partial}{\partial x} S_{x}=0
$$

* We will get the probability current density represented by the symbol S_{x}, which is as in the following equation:

$$
S_{x}=\frac{\hbar}{2 i m}\left(\psi^{*} \frac{\partial \psi}{\partial x}-\psi \frac{\partial \psi^{*}}{\partial x}\right) \quad \text { and } \quad p(x)=\psi^{*} \psi=|\psi|^{2}
$$

Example 1: Find Probability Current Density of wave function

$$
\psi(x)=A e^{-i b x}
$$

When A and b is real constants.

Solution

$$
\begin{aligned}
& \psi(x)=A e^{-i b x} \quad \Rightarrow \quad \psi^{*}(x)=A e^{+i b x} \\
& \frac{\partial \psi}{\partial x}=-i b A e^{-i b x} \quad \text { and } \quad \frac{\partial \psi^{*}}{\partial x}=i b A e^{+i b x}
\end{aligned}
$$

The equation of probability current density

$$
\begin{gathered}
S_{x}=\frac{\hbar}{2 i m}\left(\psi^{*} \frac{\partial \psi}{\partial x}-\psi \frac{\partial \psi^{*}}{\partial x}\right) \\
=\frac{\hbar}{2 i m}\left[A e^{+i b x}\left(-i b A e^{-i b x}\right)-A e^{-i b x}\left(i b A e^{+i b x}\right)\right] \\
S_{x}=\frac{\hbar}{2 i m}\left[-i b A^{2} e^{+i b x-i b x}-i b A^{2} e^{-i b x+i b x}\right] \\
S_{x}=\frac{\hbar}{2 i m}\left[-i b A^{2} e^{0}-i b A^{2} e^{0}\right] \\
=-2 i b A^{2} \frac{\hbar}{2 i m}=-\frac{b \hbar A^{2}}{m}
\end{gathered}
$$

Example 2: prove that $\quad m \frac{d}{d t}\langle x\rangle=\left\langle P_{X}\right\rangle$
$\frac{d}{d t}\langle x\rangle=\frac{d}{d t} \int \Psi^{*} x \Psi d x=\int\left(\frac{\partial \Psi^{*}}{\partial t} x \Psi+\Psi^{*} x \frac{\partial \Psi}{\partial t}\right) d x$

From TDSE and its conjugate

$$
\begin{align*}
& i \hbar \frac{\partial \Psi}{\partial \mathrm{t}}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}}+V \Psi \tag{2}\\
& -i \hbar \frac{\partial \Psi^{*}}{\partial \mathrm{t}}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi^{*}}{\partial x^{2}}+V \Psi^{*} \tag{3}
\end{align*}
$$

Now we multiply the eq. (2) by $\Psi^{*} \mathrm{x}$ and eq. (3) by $\mathrm{x} \Psi$ and subtract the resulting equations:

$$
\begin{equation*}
i \hbar\left(\Psi^{*} x \frac{\partial \Psi}{\partial \mathrm{t}}+\frac{\partial \Psi^{*}}{\partial \mathrm{t}} x \Psi\right)=-\left(\frac{\hbar^{2}}{2 m}\right)\left(\Psi^{*} x \frac{\partial^{2} \Psi}{\partial x^{2}}-\frac{\partial^{2} \Psi^{*}}{\partial x^{2}} x \Psi\right) \ldots \tag{4}
\end{equation*}
$$

* Using (4) in (1)

$$
\begin{equation*}
\frac{d}{d t}\langle x\rangle=\frac{i \hbar}{2 m} \int\left(\Psi^{*} x \frac{\partial^{2} \Psi}{\partial x^{2}}-\frac{\partial^{2} \Psi^{*}}{\partial x^{2}} x \Psi\right) d x \tag{5}
\end{equation*}
$$

* The first integral can be evaluated by part:

$$
\begin{equation*}
\int \Psi^{*} x \frac{\partial^{2} \Psi}{\partial x^{2}} d x=\left.\Psi^{*} x \frac{d \Psi}{d x}\right|_{0} ^{\infty}-\int\left(\frac{d \Psi}{d x}\right)\left(\Psi^{*}+x \frac{d \Psi^{*}}{d x}\right) d x \tag{6}
\end{equation*}
$$

* The first term on RHS is zero at both the limits:

$$
\begin{align*}
& \int \Psi^{*} x \frac{\partial^{2} \Psi}{\partial x^{2}} d x=-\int \frac{d \Psi}{d x}\left(\Psi^{*}+x \frac{d \Psi^{*}}{d x}\right) d x \\
& =-\int \Psi^{*} \frac{d \Psi}{d x} d x-\int x\left(\frac{d \Psi}{d x}\right)\left(\frac{d \Psi^{*}}{d x}\right) d x \tag{7}
\end{align*}
$$

* The first integral can be evaluated by part:

$$
-\int \frac{\partial^{2} \Psi^{*}}{\partial x^{2}} x \Psi d x=-\left.\Psi x \frac{d \Psi^{*}}{d x}\right|_{0} ^{\infty}-\int\left(\frac{d \Psi^{*}}{d x}\right)\left(\Psi+x \frac{d \Psi}{d x}\right) d x
$$

The first term on RHS is zero at both the limits:

$$
\begin{align*}
& -\int \frac{\partial^{2} \Psi^{*}}{\partial x^{2}} x \Psi d x=-\int \frac{d \Psi^{*}}{d x}\left(\Psi+x \frac{d \Psi}{d x}\right) d x \\
& =\int \Psi \frac{d \Psi^{*}}{d x} d x+\int x\left(\frac{d \Psi^{*}}{d x}\right)\left(\frac{d \Psi}{d x}\right) d x \tag{8}
\end{align*}
$$

* Substituting (7) and (8) in (5):

$$
\frac{d}{d t}\langle x\rangle=\frac{i \hbar}{2 m}-\int \Psi^{*} \frac{d \Psi}{d x} d x-\int x\left(\frac{d \Psi}{d x}\right)\left(\frac{d \Psi^{*}}{d x}\right) d x-\int \Psi \frac{d \Psi^{*}}{d x} d x+
$$

$$
\int x\left(\frac{d \Psi^{*}}{d x}\right)\left(\frac{d \Psi}{d x}\right) d x
$$

$$
\begin{align*}
& \frac{d}{d t}\langle x\rangle=\left(\frac{i \hbar}{2 m}\right)\left(-\int \Psi^{*} \frac{d \Psi}{d x} d x+\int \Psi \frac{d \Psi^{*}}{d x} d x\right. \\
& =\left(\frac{1}{2 m}\right)\left(\int \Psi^{*}\left(-i \hbar \frac{d}{d x}\right) \Psi d x+\int \Psi\left(i \hbar \frac{d}{d x}\right) \Psi^{*} d x\right. \tag{9}
\end{align*}
$$

$$
\begin{gathered}
\int \Psi^{*}\left(-i \hbar \frac{d}{d x}\right) \Psi d x=\left\langle P_{X}\right\rangle \text { and } \int \Psi\left(i \hbar \frac{d}{d x}\right) \Psi^{*} d x=\left\langle P_{X}^{*}\right\rangle \\
P_{X}=P_{X}^{*}
\end{gathered}
$$

$$
\frac{d}{d t}\langle x\rangle=\left(\frac{1}{2 m}\right)\left\langle P_{X}\right\rangle\left\langle P_{X}\right\rangle=\left(\frac{1}{2 m}\right) 2\left\langle P_{X}\right\rangle=\left(\frac{\left\langle P_{X}\right\rangle}{m}\right)
$$

$$
m \frac{d}{d t}\langle x\rangle=\left\langle P_{X}\right\rangle
$$

