Information Theory and Coding Forth Stage

Department of Computer Engineering Techniques (Stage: 4)

Probability

Probability: is the core mathematical tool for communication theory.
signal is a random process in nature:

- Message is random. No randomness, no information.
- Interference is random.
- Noise is a random process.
- And many more (delay, phase, fading, ...)
- Other real-world applications of probability and random Processes

Probability: is the study of randomness and uncertainty.
In the early days, probability was associated with games of chance (gambling).
$\underline{\text { Random experiment }}$:a random experiment is a process whose outcome is uncertain.

Examples:

- Tossing a coin once or several times
- Picking a card or cards from a deck
- Measuring temperature of patients

Event \&Sample Spaces

The set of all possible outcomes of a statistical experiment is called the sample space and is represented by the symbol S .

Each outcome in a sample space is called an element or a member of the sample space, or simply a sample point. If the sample space has a finite number of elements, we may
list the members separated by commas and enclosed in braces. Thus, the sample space S, of possible outcomes when a coin is flipped, may be written $S=\{H, T\}$, where H and T correspond to heads and tails, respectively.

Example 1: Consider the experiment of tossing a die. If we are interested in the number that
shows on the top face, the sample space is
$S 1=\{1,2,3,4,5,6\}$.

If we are interested only in whether the number is even or odd, the sample space is simply

S2 $=\{$ even, odd $\}$.
Example 2: Experiment: Toss a coin 3 times.

- Sample space S
$S=\{H H H, H H T, H T H, ~ H T T, ~ T H H, ~ T H T, ~ T T H, ~ T T T ~\} . ~$

Event :An event is a subset of a sample space.

- Examples of events include

1-at least two heads

$$
\mathrm{A}=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{TH} \mathrm{H}\}
$$

2- Exactly two tails

$$
\mathrm{B}=\{\mathrm{HTT}, \mathrm{THT}, \mathrm{TTH}\}
$$

3- Even number in the die-tossing experiment
$A=\{2,4,6\}$

4-odd number in the die-tossing experiment
$B=\{1,3,5\}$

The Characteristics of Probability:

1- For any event, $0 \leq \mathrm{P}\left(x_{i}\right) \leq 1$.
2- $\sum_{i=1}^{n} P\left(x_{i}\right)=1$

For the good solution you must solve as these points

1-called the experiment
2-define the sample pace
3-Define the event (outcome) :from the question
4-define the probability

Example 3: Consider the experiment of tossed a die. If we are interested in the number that shows on the top face, find the probability for it? Sol:
the sample space is $S 1=\{1,2,3,4,5,6\}$.
Events: show the top face: $1,2,3,4,5,6$
$P(1)=1 / 6 ; \quad p(2)=1 / 6 ; \quad p(3)=1 / 6 ;$

Example 4: find the probability for Toss a coin one times.
$S=\{H, T\}$
$\mathrm{P}(\mathrm{H})=1 / 2, \quad \mathrm{p}(\mathrm{T})=1 / 2$

Example .5: find the probability for experiment tossed a coin 3 times to get

1-Top face. 2-at least two heads. 3-exactly three tails Sol:
$S=\{H H H, H H T, H T H, ~ H T T, ~ T H H, ~ T H T, ~ T T H, ~ T T T ~\} . ~$
1- the probability of the top face is:
$\mathrm{P}(\mathrm{HHH})=1 / 8, \mathrm{P}(\mathrm{HHT})=1 / 8, \mathrm{P}(\mathrm{HTH})=1 / 82$ - At least
two heads: $\mathrm{A}=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}\}$
$\mathrm{P}(\mathrm{A})=1 / 8+1 / 8+1 / 8+1 / 8=4 / 83$ - Exactly three tails: $\mathrm{B}=$
\{TTT\}
$\mathrm{P}(\mathrm{B})=1 / 8$
H.W: find the probability for tossed the die two time for all events?

