LECTURE 6 Fulll-Wave Rectifier (FWR)
 Analog Electronics

07.11.2022

By
Dr. Basim Al-Qargholi

Outline and Aim

After completing this lecture, you should be able to:

- Analyze the operation of a Full-Wave Bridge Rectifier
- Describe how the diodes function in a Full-Wave Bridge Rectifier
- Determine the average value of a Full-Wave Bridge Rectifier
- Determine the peak inverse voltage (PIV)
- Compare between (HWR), Centre-tapped (FWR) \& Bridge (FWR)

Full-Wave Bridge Rectifier

The full-wave bridge rectifier uses four diodes, as shown in Fig. 1.
a) When the input cycle is positive, as in Fig. 1, a), diodes D_{1} and D_{2} are forwardbiased and conduct current in the direction shown. A voltage is developed across R_{L} that looks like the positive half of the input cycle. During this time, diodes D_{3} and D_{4} are reverse-biased.

Fig. 1, a): During positive half-cycle of the input, D_{1} and D_{2} are forward-biased and conduct current. D_{3} and D_{4} are reverse-biased

Full-Wave Bridge Rectifier

The full-wave bridge rectifier uses four diodes, as shown in Fig. 1.
b) When the input cycle is negative, as in Fig. 1, b), diodes D_{3} and D_{4} are forwardbiased and conduct current in the same direction through as during the positive half-cycle. During the negative half-cycle, D_{1} and D_{2} are reverse-biased. A fullwave rectified output voltage appears across R_{L} as a result of this action.

Fig. 1, b): During positive half-cycle of the input, D_{3} and D_{4} are forward-biased and conduct current. D_{1} and D_{2} are reverse-biased

Full-Wave Bridge Rectifier

The bridge output voltage from the transformer:
The secondary voltage is equal to the primary voltage times the turns ratio as stated by the equation:
$\mathrm{V}_{p(\text { sec })}=\mathrm{V}_{p(\text { out })}$
$\mathrm{V}_{p(\text { sec })}=\mathrm{V}_{p(o u t)}=n \mathrm{~V}_{p(p r i)}$

Fig. 2: The bridge output voltage from the transformer

Full-Wave Bridge Rectifier

Peak Inverse Voltage (PIV)

Let's assume that the input is in its positive half-cycle Then:

- D_{1} and D_{2} are forward-Biased
- D_{3} and D_{4} are reversed-Biased
- In Fig.1, a), PIV is equal to the $\mathrm{V}_{p(\text { sec })}$ which is equal to the $\mathrm{V}_{p(o u t)}$

Fig. 1, a): During positive half-cycle of the input, D_{1} and D_{2} are forward-biased and conduct current. D_{3} and D_{4} are reverse-biased

Full-Wave Bridge Rectifier

Peak Inverse Voltage (PIV)

The PIV rating of the bridge diodes is half that required for the center-tapped rectifier for the same output voltage.

$$
\mathrm{PIV}=\mathrm{V}_{p(\text { sec })}=\mathrm{V}_{p(\text { out })}
$$

Fig. 1, a): During positive half-cycle of the input, D_{1} and D_{2} are forward-biased and conduct current. D_{3} and D_{4} are reverse-biased

Full-Wave Bridge Rectifier

Example 1:

a) Determine the peak output voltage $\mathrm{V}_{\mathrm{p}(\text { out })}, \mathrm{V}_{\mathrm{p}(\mathrm{RL})}$ and $\mathrm{V}_{\mathrm{AVG}}$ for the bridge rectifier in Fig. 3.
b) What is the minimum PIV rating required for the diodes?

Solution:

a) $V_{p(\text { out })}=V_{p(\text { sec })}=n V_{p(\text { in })}=(1) 25 \mathrm{~V}=25 \mathrm{~V}$

$$
V_{p(R L)}=V_{p(o u t)}-2\left(V_{B}\right)=23.6 \mathrm{~V}
$$

$V_{A V G}=\frac{2 V_{p(R L)}}{\pi}=\frac{47.2}{3.14}=15 \mathrm{~V}$
b) $\operatorname{PIV}=\mathrm{V}_{p(\text { sec })}=\mathrm{V}_{p(o u t)}=25 \mathrm{~V}$
1:1
 $-25 \mathrm{~V}$

Fig. 3: Full-Wave Bridge Rectifier

Compression between (HWR), Centre-tapped (FWR) \& Bridge (FWR)

	HWR	Center-tapped FWR	Bridge FWR

Compression between (HWR), Centre-tapped (FWR) \& Bridge (FWR)

	HWR	Center-tapped FWR	Bridge FWR
Allows	Allows only one-half	Allows unidirectional half	Allows unidirectional half
Output wave	$\operatorname{vom}_{0} \bigcap \Omega \Omega$		
Transformer type	Standard	Center-Tapped	Standard
Number of diodes	1	2	4
$V_{A V G}$	$=\frac{V_{p(o u t)}}{\pi}$	$V_{A V G}=\frac{2 V_{p(o u t)}}{\pi}$	$V_{A V G}=\frac{2 V_{p(o u t)}}{\pi}$
$V_{p(R L)}$	$\begin{aligned} & =V_{p(o u t)}-0.7 \mathrm{~V} \\ & =V_{p(\mathrm{sec})}-0.7 \mathrm{~V} \end{aligned}$	$\begin{aligned} & =V_{p(o u t)}-0.7 \mathrm{~V} \\ & =\frac{V_{p(\mathrm{sec})}}{2}-0.7 \mathrm{~V} \end{aligned}$	$\begin{aligned} & =V_{p(o u t)}-2 \times 0.7 \mathrm{~V} \\ & =V_{p(\mathrm{sec})}-2 \times 0.7 \mathrm{~V} \end{aligned}$
PIV	$=V_{p(s e c)}$	$=V_{p(s e c)}=2 V_{p(o u t)}$	$=V_{p(s e c)}$
Frequency	Equal	Double	Double

