Information Theory and Coding Forth Stage

Mutual information for noisy channel:

Consider the set of symbols $x 1, x 2, \ldots, x n$, the transmitter $T x$ my produce. The receiver $R x$ may receive $y 1, y 2 \ldots y m$. Theoretically, if the noise and jamming is neglected, then the set $\mathrm{X}=$ set Y . However and due to noise and jamming, there will be a conditional
 probability $P(y j \mid x i)$:

1- $P(x i)$ to be what is so called the a priori probability of the symbol $x i$, which is the prob of selecting $x i$ for transmission.

2- 2- $P(y j \mid x i)$ to be what is called the aposteriori probability of the symbol $x i$ after the reception of $y j$. The amount of information that $y j$ provides about $x i$ is called the mutual information between $x i$ and $y i$. This is given by:

$$
I\left(x_{i}, y_{j}\right)=\log _{2}\left(\frac{\text { aposterori prob }}{\text { apriori prob }}\right)=\log _{2}\left(\frac{P\left(y_{j} \mid x_{i}\right)}{P\left(x_{i}\right)}\right)
$$

Properties of $I(x i, y i):$

1- It is symmetric, $I(x i, y j)=I(y j, x i)$.
2- $I(x i, y j)>0$ if aposteriori probability > a priori probability, $y j$ provides +ve information about $x i$.

3- $I(x i, y j)=0$ if aposteriori probability $=$ a priori probability, which is the case of statistical independence when $y j$ provides no information about $x i$.

4- $I(x i, y j)<0$ if aposteriori probability < a priori probability, $y j$ provides -ve information about $x i$, or $y j$ adds ambiguity.

Example: Show that $\mathrm{I}(\mathrm{X}, \mathrm{Y})$ is zero for extremely noisy channel.
Solution: For extremely noisy channel, then yjgives no information about $x i$ the receiver can't decide anything about $x i$ as if we transmit a deterministic signal $x i$ but the receiver receives noise like signal $y j$ that is completely has no correlation with $x i$. Then $x i$ and $y j$ are statistically independent so that $P(x i \| y j)=P(x i)$ and $P(y j|\mid x i$ $)=P(x i)$ for all i and j, then: $I(x i, y j)=\log 21=0$ for all $i \& j$, then $I(X, Y)=0$

1. Joint entropy:

In information theory, joint entropy is a measure of the uncertainty associated with a set of variables.

$$
H(X, Y)=H(X Y)=-\sum_{j=1}^{m} \sum_{i=1}^{n} P(x i, y j) \log _{2} P(x i, y j) \quad \text { bits } / \text { symbol }
$$

2. Conditional entropy:

In information theory, the conditional entropy quantifies the amount of information needed to describe the outcome of a random variable Y given that the value of another random variable X is known.

$$
H(Y \mid X)=-\sum_{j=1}^{m} \sum_{i=1}^{n} P(x i, y j) \log _{2} P(y j \mid x i) \quad \text { bits } / \text { symbol }
$$

3. Marginal Entropies:

Marginal entropies is a term usually used to denote both source entropy $\mathrm{H}(\mathrm{X})$ defined as before and the receiver entropy $\mathrm{H}(\mathrm{Y})$ given by:

$$
H(y)=-\sum_{j=1}^{m} P(y j) \log _{2} P(y j) \quad \text { bit } / \text { symbol }
$$

4. Relationship between joint, conditional and transinformation:

Noise entropy:

$$
\begin{aligned}
& H(Y \mid X)=H(X, Y)-H(X) \\
& H(X \mid Y)=H(X, Y)-H(Y)
\end{aligned}
$$

Loss entropy:

Also we have transinformation (average mutual information):

$$
\begin{aligned}
& I(X, Y)=H(X)-H(X \mid Y) \\
& I(X, Y)=H(Y)-H(Y \mid X)
\end{aligned}
$$

Example: The joint probability of a system is given by:

$$
P(X, Y)=x_{2} x_{2}\left[\begin{array}{lr}
0.5 & 0.25 \\
x_{3} & \begin{array}{l}
0.125 \\
0 \\
0.0625
\end{array} \\
0.0625
\end{array}\right]
$$

Find:
1- Marginal entropies.
2- Joint entropy.
3- Conditional entropies.
4- The transinformation.

Solution:

$x 1$	$x 2$	$x 3$	$y 1$	$y 2$
$P(x)=\left[\begin{array}{lcc}0.75 & 0.125 & 0.125],\end{array} \quad P(y)=\left[\begin{array}{ll}0.5625 & 0.4375\end{array}\right]\right.$				

1-

$$
\begin{aligned}
H(x)=- & \sum_{i=1}^{n} P(x i) \log _{2} P(x i)=-\left[\frac{0.75 \ln 0.75+2 * 0.125 \ln 0.125}{\ln 2}\right] \\
& =1.06127 \mathrm{bit} / \text { symbol }
\end{aligned}
$$

$$
\begin{aligned}
H(y)=- & \sum_{j=1}^{m} P(y j) \log _{2} P(y j)=-\left[\frac{0.5625 \ln 0.5625+0.4375 \ln 0.4375}{\ln 2}\right] \\
& =0.9887 \text { bit } / \text { symbol }
\end{aligned}
$$

2-

$$
\begin{aligned}
& H(x, y)=-\sum_{\mathrm{j}=1}^{\mathrm{m}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{P}(\mathrm{xi}, \mathrm{yj}) \log _{2} \mathrm{P}(\mathrm{xi}, \mathrm{yj}) \\
&=-\left[\frac{0.5 \ln 0.5+0.25 \ln 0.25+0.125 \ln 0.125+2 * 0.0625 \ln 0.0625}{\ln 2}\right] \\
&=1.875 \text { bit } / \text { symbol }
\end{aligned}
$$

3-

$$
\begin{aligned}
& H(y \mid x)=H(x, y)-H(x)=1.875-1.06127=0.813 \quad \text { bit } / \text { symbol } \\
& H(x \mid y)=H(x, y)-H(y)=1.875-0.9887=0.886 \quad \text { bit } / \text { symbol }
\end{aligned}
$$

4-

$$
I(x, y)=H(x)-H(x \mid y)=1.06127-0.886=0.175 \mathrm{bit} / \mathrm{symbol}
$$

