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Mutual information for noisy channel: , — -
Consider the set of symbols x1, x2,.....xn, the |~ = W o
transmitter Tx my produce. The receiver Rx may receive : v 2
yl, ¥2 .. ym. Theoretically, if the noise and ciannddl { L
jamming is neglected, then the set X=set Y. However - .
and due to noise and jamming, there will be a conditional ) ‘ "

probability P(yj | xi):
1- P(xi) to be what is so called the a priori probability of the symbol xi , which is
the prob of selecting xi for transmission.
2- 2- P(yj | xi) to be what is called the aposteriori probability of the symbol xi after
the reception of yj . The amount of information that y;j provides about xi is called

the mutual information between xi and yi . This is given by:

aposterori prob P(y;|x)
10x, ) = log, ( )=1o (*’—

apriori prob P(x;)

Properties of I(xi , yj):

1- Itis symmetric, I(xi, yj) = I(yj , xi).

2- I(xi, yj) > 0 if aposteriori probability > a priori probability, yj provides +ve
information about xi .

3- I(xi, yj) = 0 if aposteriori probability = a priori probability, which is the case of
statistical independence when yj provides no information about xi .

4- I(xi, yj) <0 if aposteriori probability < a priori probability, yj provides -ve

information about xi , or yj adds ambiguity.
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Example: Show that I1(X, Y) is zero for extremely noisy channel.

Solution: For extremely noisy channel, then yjgives no information about xi the
receiver can’t decide anything about xi as if we transmit a deterministic signal xi but
the receiver receives noise like signal yj that is completely has no correlation with xi .
Then xi and yj are statistically independent so that P( xi | | yj ) = P(xi )and P( yj | | xi
)=P(xi) foralliand j,then: I(xi,yj)=10921 =0 for alli & j,then I(X,Y) =0

1. Joint entropy:
In information theory, joint entropy is a measure of the uncertainty associated

with a set of variables.

m
H(X,Y) = H(XY) = —Z P(xi,yj)log,P(xi,yj) bits/symbol

n
j=11i=1
2. Conditional entropy:
In information theory, the conditional entropy quantifies the amount of
information needed to describe the outcome of a random variable Y given that the

value of another random variable X is known.

m n

HY |X) = —ZZ P(xi,yj)log,P(yj | xi) bits/symbol

j=1i=1
3. Marginal Entropies:
Marginal entropies is a term usually used to denote both source entropy H(X)

defined as before and the receiver entropy H(Y) given by:

m
HO) == ) PONIog,P())  bit/symbol
j=1

4. Relationship between joint, conditional and transinformation:

Noise entropy: HY|X)=HX)Y)—-H(X)
Loss entropy: HXI|Y)=HXY)—H()
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Also we have transinformation (average mutual information):
I(X,Y)=H(X)—H(X 1Y)
I(X,Y)=H)—-H{Y|X)

Example: The joint probability of a system is given by:

X110.5 0.25
PX,Y)=%2|0 0.125
X310.0625 0.0625

Find:
1- Marginal entropies.
2- Joint entropy.
3- Conditional entropies.
4- The transinformation.

Solution:
x1 X2 X3 yl

P(X)=[0.75 0.125 0.125], P(y)=[0.5625

1-

n

y2
0.4375]

_ _ 0.750n0.75 + 2 * 0.125[n0.125
H(x) = — P(xi)log,P(xi) = —[ I ]

i=1

= 1.06127 bit/symbol

m

0.5625[n0.5625 + 0.4375ln0.4375]

H(y) = - Z P(yj)log,P(yj) = - [ In2

j=1
= 0.9887 bit/symbol
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2.
m n
Hx,y) == ) P(xi,y)log;P(i,yj)
j=1 i=1
0.51n0.5 + 0.25(n0.25 + 0.125[n0.125 + 2 * 0.06251n0.0625
- [ In2 ]
= 1.875 bit/symbol
3-

H(y|x) = H(x,y) —H(x) = 1.875 —-1.06127 = 0.813  bit/symbol
H(x|y)= H(x,y) — H(y) = 1.875 —0.9887 = 0.886  bit/symbol

A-
I(x,y) =H(x)—H(x|y)=1.06127 — 0.886 = 0.175 bit/symbol





