

Information Theory and Coding Forth Stage

MSc. Zahraa Niema Kamal

Lecture Six

First Course

Mutual information for noisy channel:

Consider the set of symbols x1, x2,...,xn, the transmitter Tx my produce. The receiver Rx may receive y1, y2ym. Theoretically, if the noise and jamming is neglected, then the set X=set Y. However and due to noise and jamming, there will be a conditional probability P(yj | xi):

- 1- P(xi) to be what is so called the a priori probability of the symbol xi, which is the prob of selecting xi for transmission.
- 2- 2- P(yj | xi) to be what is called the aposteriori probability of the symbol xi after the reception of yj. The amount of information that yj provides about xi is called *the mutual information* between xi and yi. This is given by:

$$I(x_i, y_j) = \log_2\left(\frac{aposterori\ prob}{apriori\ prob}\right) = \log_2\left(\frac{P(y_j \mid x_i)}{P(x_i)}\right)$$

Properties of I(xi, yj):

- 1- It is symmetric, I(xi, yj) = I(yj, xi).
- 2- I(xi, yj) > 0 if aposteriori probability > a priori probability, yj provides +ve information about xi.
- 3- I(xi, yj) = 0 if aposteriori probability = a priori probability, which is the case of statistical independence when yj provides no information about xi.
- 4- I(xi, yj) < 0 if aposteriori probability < a priori probability, yj provides -ve information about xi, or yj adds ambiguity.

Example: Show that I(X, Y) is zero for extremely noisy channel.

Solution: For extremely noisy channel, then yj gives no information about xi the receiver can't decide anything about xi as if we transmit a deterministic signal xi but the receiver receives noise like signal yj that is completely has no correlation with xi. Then xi and yj are statistically independent so that P(xi | | yj) = P(xi) and P(yj | | xi) = P(xi) for all i and j, then: $I(xi, yj) = \log 21 = 0$ for all i & j, then I(X, Y) = 0

1. Joint entropy:

In information theory, joint entropy is a measure of the uncertainty associated with a set of variables.

$$H(X,Y) = H(XY) = -\sum_{j=1}^{m} \sum_{i=1}^{n} P(xi,yj) \log_2 P(xi,yj) \quad bits/symbol$$

2. Conditional entropy:

In information theory, the conditional entropy quantifies the amount of information needed to describe the outcome of a random variable Y given that the value of another random variable X is known.

$$H(Y \mid X) = -\sum_{j=1}^{m} \sum_{i=1}^{n} P(xi, yj) \log_2 P(yj \mid xi) \quad bits/symbol$$

3. Marginal Entropies:

Marginal entropies is a term usually used to denote both source entropy H(X) defined as before and the receiver entropy H(Y) given by:

$$H(y) = -\sum_{j=1}^{m} P(yj) \log_2 P(yj) \qquad bit/symbol$$

4. Relationship between joint, conditional and transinformation:

<u>Noise entropy:</u>	$H(Y \mid X) = H(X,Y) - H(X)$
<u>Loss entropy:</u>	$H(X \mid Y) = H(X,Y) - H(Y)$

Also we have transinformation (average mutual information):

$$I(X,Y) = H(X) - H(X | Y)$$
$$I(X,Y) = H(Y) - H(Y | X)$$

Example: The joint probability of a system is given by:

$$P(X,Y) = \begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \begin{bmatrix} 0.5 & 0.25 \\ 0 & 0.125 \\ 0.0625 & 0.0625 \end{bmatrix}$$

Find:

- 1- Marginal entropies.
- 2- Joint entropy.
- 3- Conditional entropies.
- 4- The transinformation.

Solution:

x1 x2 x3 y1 y2
P(x)=
$$[0.75 \ 0.125 \ 0.125]$$
, P(y)= $[0.5625 \ 0.4375]$

1-

$$H(x) = -\sum_{i=1}^{n} P(xi) \log_2 P(xi) = -\left[\frac{0.75 \ln 0.75 + 2 * 0.125 \ln 0.125}{\ln 2}\right]$$

= 1.06127 bit/symbol

$$H(y) = -\sum_{j=1}^{m} P(yj) \log_2 P(yj) = -\left[\frac{0.5625 ln 0.5625 + 0.4375 ln 0.4375}{ln 2}\right]$$
$$= 0.9887 \ bit/symbol$$

2-

$$H(x,y) = -\sum_{j=1}^{m} \sum_{i=1}^{n} P(xi,yj) \log_2 P(xi,yj)$$

= $-\left[\frac{0.5ln0.5 + 0.25ln0.25 + 0.125ln0.125 + 2 * 0.0625ln0.0625}{ln2}\right]$
= 1.875 bit/symbol

3-

 $H(y \mid x) = H(x, y) - H(x) = 1.875 - 1.06127 = 0.813$ bit/symbol $H(x \mid y) = H(x, y) - H(y) = 1.875 - 0.9887 = 0.886$ bit/symbol

4-

I(x, y) = H(x) - H(x | y) = 1.06127 - 0.886 = 0.175 bit/symbol