ALMUSTAQBAL UNIVERSITY COLLEGE

Biomedical Engineering Department

Stage: Second year students

Subject : Chemistry 1 - Lecture 10

Lecturer: Assistant professor Dr. SADIQ . J. BAQIR

Buffer solutions

The buffer is a mixture of a weak acid and its conjugate base (Salt) or a weak base and its conjugate acid(Salt), that resists change in pH of a solution due to dilution or addition of a small amounts of strong acid or base. Buffers are used to Maintain the pH of solutions at relatively constant and predetermined level.

Usually, buffers have a useful \underline{pH} range = $pK_a \pm 1$,

Calculation of the pH of different types of Buffer solutions

1. acidic buffers

Consists of weak acid (HA) and its salt (A⁻) . Typical example is (acetic acid – acetate salt (CH₃COOH – CH₃COO⁻)

$$HA + H_2O \rightleftharpoons H_3O^+ + A^- \longrightarrow 1$$

$$Ka = \frac{[H_3O^+][A^-]}{[HA]}$$

$$A^- + H_2O \rightleftharpoons OH^- + HA \longrightarrow 2$$

$$K_b = \frac{[OH][HA]}{[A-]} = \frac{Kw}{Ka}$$

equilibrium 1) will decrease C_{HA} by amount $[H_3O^+]$ and equilibrium 2) will increase it by amount $[OH^-]$.

$$[HA]_{equil.} = C_{HA} - [H_3O^+] + [OH^-]$$

Similarly equilibrium ① will increase $[A^-]$ by amount $[H_3O^+]$ while equilibrium ② will decrease $[A^-]$ by amount $[OH^-]$ then

$$[A^{-}]_{equil.} = C_{A-} + [H_{3}O^{+}] - [OH^{-}]$$

As we have acid then

$$[HA] = C_{HA} - [H_3O^+]$$

$$[A^{-}] = C_{A^{-}} + [H_{3}O^{+}]$$

And because we have weak acid then

$$[HA] \cong C_{HA}$$

$$[A^-] \cong C_{A-}$$

$$Ka = \frac{[H_3O^+][A^-]}{[HA]}$$

$$[H_3O^+] = K_a \frac{[HA]}{[A^-]}$$

$$[H_3O^+] = K_a \frac{c_{HA}}{c_{A^-}}$$

- log [H₃O] = -log K_a - log
$$\frac{C_{HA}}{C_{A-}}$$

$$pH = pKa + log \; \frac{c_A}{c_{HA}}$$

**
$$pH = pKa + log \frac{c_{salt}}{c_{acid}}$$
 (Henderson equation)

Example: what is the pH of a solution that is (0.40 M) in formic acid $(\text{Ka}=1.80 \times 10^{-4})$ and (1.0 M) in sodium formate?

Solution:

The pH of the solution will be effected by Ka of formic acid (HCOOH) and K_b of formate ion (HCOO⁻)

$$HCOONa \rightarrow HCOO^- + Na^+$$

$$HCOOH + H_2O \rightleftharpoons HCOO^- + H_3O^+$$
 $Ka = 1.77 \times 10^{-4}$

$$HCOO^{-} + H_{2}O \rightleftharpoons HCOOH + OH^{-}$$
 $K_{b} = \frac{Kw}{Ka} = 5.65 \times 10^{-11}$

Since Ka of formic acid >> K_b for formate the solution will be acidic and Ka will determine the H_3O^+ conc.

$$pH = pKa + log \frac{c_{salt}}{c_{acid}}$$

$$pKa = -\log Ka = -\log (1.77 \times 10^{-4}) = 3.75$$

$$pH = 3.75 + log \frac{1.0}{0.4} = 4.14$$

$$[H_3O^+] = 10^{-pH} = 10^{-4.14} = 7.2 \text{ x } 10^{-5}$$

Check if $\frac{[\text{H3O}^+]}{[\text{HCOOH}]} \times 100 < 10 \%$ Then approximation is valid $\frac{7.2 \times 10^{-5}}{0.4} \times 100 = 0.018 \%$

The approximation is valid:

B) basic Buffers

It is composed of a solution of a weak base (B) and it's conjugate acid (Salt) BH^+ e.g : NH_3 - NH_4Cl .

1)
$$B + H_2O \rightleftharpoons BH^+ + OH^ K_b = \frac{[OH^-][BH^+]}{[B]}$$

$$NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$$

2)
$$BH^{+} + H_{2}O \rightleftharpoons H_{3}O^{+} + B$$
 $K_{a} = \frac{Kw}{Kb} = \frac{[H_{3}O^{+}][B]}{[BH^{+}]}$

$$NH_4^+ + H_2O \rightleftharpoons H_3O^+ + NH_3$$

[B] will decrease in equilibrium ①by amount [OH-] & increase in equilibrium ②by [H₃O+]

Then
$$[B] = C_B - [OH^-] + [H_3O^+]$$

Similarly [BH⁺] will increase in equilibrium (1) By [OH⁻] and decrease in equilibrium (2) by [H₃O⁺].

Then
$$[BH^+] = C_{BH^+} + [OH^-] - [H_3O^+]$$

$$[B] \equiv C_B$$
 and $[BH^+] \equiv C_{BH^+}$ (by approximation)

$$K_b = \frac{[\text{OH}^-][\text{BH}^+]}{[\text{B}]}$$

$$[OH^{-}] = K_b \frac{C_B}{C_{BH^{+}}}$$

$$pOH = pK_b + log \frac{[BH^+]}{[B]}$$

$$pOH = pK_b + log \frac{C_{salt}}{C_{base}}$$
 (Henderson equation)

In General:

$$pH = pK_a + log \frac{C_{salt}}{C_{acid}}$$
 (for acidic buffer)

$$pOH = pK_b + log \frac{C_{salt}}{C_{base}}$$
 (for basic buffer)

$$pH = 14 - pOH$$

Example: calculate the pH of a solution that is 0.2 M in NH₃ and 0.3 M in NH₄Cl ($K_b = 1.75 \times 10^{-5}$).

Solution:

$$NH_4Cl \rightarrow NH_4^+ + Cl^-$$

$$NH_4^+ + H_2O \rightleftharpoons NH_3 + H_3O^+$$
 $Ka = \frac{K_w}{K_b} = \frac{10^{-14}}{1.75 \times 10^{-5}} = 5.7 \times 10^{-10}$

$$NH_3 + H_2O \Rightarrow NH_4^+ + OH^ K_b = 1.75 \times 10^{-5}$$

because $K_b >> K_a$ the solution is assumed to be basic

$$pOH = pK_b + log \frac{C_{salt}}{C_{base}}$$
 (for basic buffer)

$$pK_b = -\log K_b = -\log (1.75 \times 10^{-5}) = 4.75$$

$$pOH = 4.75 + log \frac{0.3}{0.2} = 4.93$$

To check the validity of approximation we calculate [OH-]

$$[OH^{-}] = 10^{-pOH} = 10^{-4.93} = 1.17 \times 10^{-5}$$

then Check if $\frac{[OH^-]}{[Base]} \times 100 < 10 \%$ Then approximation is valid

Then
$$\frac{1.17 \times 10^{-5}}{0.2} \times 100 = 5.85 \times 10^{-3}$$
 (approximation is valid)

$$pH = 14 - 4.93 = 9.07$$

Properties of buffer solution:

1 Effect of dilution:

The pH of the buffer solution remains independent of dilution until the concentration of species it's contain are decreased to the point where the approximation mentioned above become invalid.

Example: calculate the change in pH of a buffer containing (0.4M) formic acid HCOOH (Ka= $1.77x10^{-4}$) and (1M) sodium formate HCOONa after dilution by a factor of 50 times .

Solution:

$$HCOONa \rightarrow HCOO^{-} + Na^{+}$$

$$HCOOH + H_2O \rightleftharpoons HCOO^- + H_3O^+$$
 $Ka = 1.77 \times 10^{-4}$

$$HCOO^{-} + H_{2}O \rightleftharpoons HCOOH + OH^{-}$$
 $K_{b} = \frac{Kw}{Ka} = 5.65 \times 10^{-11}$

Since Ka of formic acid \gg K_b for formate the solution will be acidic.

$$pH = pKa + log \frac{[HCOONa]}{[HCOOH]}$$

$$pKa = -\log(1.77x10^{-4}) = 3.75$$

a. Before Dilution

$$pH = 3.75 + \log \frac{1}{0.4} = 4.15$$

$$[H_3O^+] = 10^{-pH} = 10^{-4.15} = 7.2 \text{ x } 10^{-5}$$

Check if $\frac{[\text{H}30^+]}{[\text{H}COOH]} \times 100 < 10 \%$ Then approximation is valid $\frac{7.1 \times 10^{-5}}{0.4} \times 100 = 0.0177 \%$

The approximation is valid.

b. After dilution with 50 times.

$$M_1V_1 = M_2V_2$$

$$0.4 \text{ x} 1 = M_2 \text{ x} 50$$

[HCOOH] =
$$\frac{0.4}{50}$$
 = 8 x 10⁻³ M

For [HCOO-]

$$1 \times 1 = M_2 \times 50$$

$$[HCOO^{-}] = \frac{1}{50} = 2 \times 10^{-2} M$$

$$pH = 3.75 + \log_{\frac{8 \times 10^{-2}}{8 \times 10^{-3}}} = 4.15$$

$$[H_3O^+] = 10^{-pH} = 10^{-4.15} = 7.2 \text{ x } 10^{-5}$$

Check if
$$\frac{[\text{H30}^+]}{[\text{HCOOH}]} \times 100 < 10 \%$$
 Then approximation is valid $\frac{7.2 \times 10^{-5}}{0.4} \times 100 = 0.018 \%$

The approximation is valid.

 \therefore NO change in pH occur after 50 times dilution($\Delta PH = 0$)

(2) Effect of adding strong acid or base:

Buffer solution resist the pH change after addition of small amount of strong acid or base.

Example: Calculate the pH change that take place when 100 mL portion of: **a)** 0.05 M NaOH **b)** 0.05 M HCl

is added seperately to 400 mL of buffer solution of (0.2M) NH_3 and (0.3M) NH_4Cl ($K_b=1.75x10^{-5}$).

Solution:

a. The original buffer before addition

$$NH_4Cl \rightarrow NH_4^+ + Cl^-$$

$$NH_4^+ + H_2O \Rightarrow NH_3 + H_3O^+$$
 $Ka = \frac{K_W}{K_b} = \frac{10^{-14}}{1.75 \times 10^{-5}} = 5.7 \times 10^{-10}$

$$NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^ K_b = 1.75 x 10^{-5}$$

because $K_b >> K_a$ the solution is assumed to be basic

$$pOH = pK_b + log \frac{c_{salt}}{c_{base}}$$
 (for basic buffer)

$$pK_b = -\log K_b = -\log (1.75 \times 10^{-5}) = 4.75$$

$$pOH = pK_b + log \frac{c_{NH_4Cl}}{c_{NH_3}} = 4.76 + log \frac{0.3}{0.2} = 4.93$$

$$[OH^{-}] = 10^{-pOH} = 10^{-4.93} = 1.17 \times 10^{-5}$$

To check the validity of approximation we calculate [OH-] then

Check if
$$\frac{[OH-]}{[Base]} \times 100 < 10 \%$$
 Then approximation is valid

Then
$$\frac{1.17 \times 10^{-5}}{0.2} \times 100 = 5.85 \times 10^{-3}$$
 % (approximation is valid)

$$pH = 14 - 4.93 = 9.07$$

b. after addition of strong base or acid

1) addition of NaOH converts part of NH₄⁺ in the buffer to NH₃

$$NH_4^+ + OH^- \rightleftharpoons NH_3 + H_2O$$
 (OH from NaOH)

The analytical concentration of NH₃ and NH₄Cl become :

$$C_{NH_3} = \frac{\text{original No.of moles of NH}_3 + \text{moles of produced NH}_3}{\text{Total New volume (L)}}$$

Or
$$C_{NH_3} = \frac{\text{original No.of mmoles of NH}_3 + \text{mmoles of produced NH}_3}{\text{Total New volume (mL)}}$$

No. of moles of produced $NH_3 = No.$ of moles of reacted NaOH

$$C_{NH_3} = \frac{M_{NH_3}V_{NH_3} + M_{NaOH}V_{NaOH}}{V_{NH_3} + V_{NaOH}}$$

$$C_{NH_3} = \frac{400 \times 0.2 + 100 \times 0.05}{[400 + 100]} = \frac{85}{500} = 0.17 \text{M}$$

$$C_{NH4+} = \frac{\text{original No. of moles of NH}_4^+ - \text{moles of reacted NH}_4^+}{\text{Total New volume(L)}}$$

$$Or \ C_{NH4+} \ = \ \frac{original \ No. \ of \ mmoles \ of \ NH_4^+ - \ mmoles \ of \ reacted \ NH_4^+}{Total \ New \ volume(mL)}$$

No. of moles of consumed NH_4^+ = No. of moles of reacted NaOH

$$C_{NH_4Cl} = \frac{M_{NH_4Cl}V_{NH_4Cl} - M_{NaOH}V_{NaOH}}{VNH_4Cl + V_{NaOH}}$$

$$C_{NH_4Cl} = \frac{400 \times 0.3 - 100 \times 0.05}{[400 + 100]} = \frac{115}{500} = 0.23$$
M

pOH = 4.76+ log
$$\frac{0.23}{0.17}$$
 = 4.89 (Henderson equation)

$$[OH^{-}] = 10^{-pOH} = 10^{-4.93} = 1.17 \times 10^{-5}$$

To check the validity of approximation we calculate

if
$$\frac{[OH^-]}{[Base]} \times 100 < 10 \%$$
 Then approximation is valid

Then
$$\frac{1.17 \times 10^{-5}}{0.2} \times 100 = 5.85 \times 10^{-3}$$
 (approximation is valid)

$$pH = 14 - 4.89 = 9.11$$

$$\Delta pH = 9.11 - 9.07 = 0.04$$

2) addition of HCl converts part of NH₃ to NH₄Cl

$$NH_3 + H_3O^+ \rightleftharpoons NH_4^+ + H_2O (H_3O^+ \text{ from HCl})$$

$$C_{NH3} \ = \ \frac{\text{original No.of moles of NH}_3 - \text{moles of reacted NH}_3}{\text{Total New volume (L)}}$$

$$Or \ C_{NH3} \ = \ \frac{original \ No. of \ mmoles \ of \ NH_3 - \ mmoles \ of \ reacted \ NH_3}{Total \ New \ volume \ (mL)}$$

No. of moles of consumed $NH_3 = No.$ of moles of reacted HCl

$$C_{NH_3} = \frac{M_{NH_3}V_{NH_3} - M_{HCl}V_{HCl}}{V_{NH_3} + V_{HCl}}$$

$$C_{NH_3} = \frac{400 \times 0.2 - 100 \times 0.05}{[400 + 100]} = 0.150$$
M

$$C_{\mathrm{NH_4}^+}$$
 = $\frac{\mathrm{original\ No\ of\ moles\ of\ NH_4}^+ + \mathrm{moles\ of\ produced\ NH_4}^+}{\mathrm{Total\ New\ volume\ (L)}}$

Or
$$C_{\text{NH}_4}^+ = \frac{\text{original No of mmoles of NH}_4^+ + \text{mmoles of produced NH}_4^+}{\text{Total New volume (mL)}}$$

No. of moles of produced $NH_4 = No.$ of moles of reacted HCl

$$C_{NH_4Cl} = \frac{\mathsf{M}_{NH_4Cl} \mathsf{V}_{NH_4Cl} + \mathsf{M}_{\mathsf{HCl}} \mathsf{V}_{\mathsf{HCl}}}{\mathsf{V}_{NH_4Cl} + \mathsf{V}_{\mathsf{HCl}}}$$

$$C_{NH_4Cl} = \frac{400 \times 0.3 + 100 \times 0.05}{[400 + 100]} = 0.25 M$$

pOH= pK_b +
$$log \frac{NH_4Cl}{C_{NH_3}}$$
 (Henderson equation)

pOH =
$$4.76 + \log \frac{0.25}{0.15} = 4.98$$

$$[OH^{-}] = 10^{-pOH} = 10^{-4.98} = 1.05 \times 10^{-5}$$

To check the validity of approximation we calculate [OH-] then

Check if
$$\frac{[OH^-]}{[Base]} \times 100 < 10 \%$$
 Then approximation is valid

Then
$$\frac{1.05 \times 10^{-5}}{0.2} \times 100 = 5.51 \times 10^{-3}$$
 (approximation is valid)

$$pH = 14 - 4.98 = 9.02$$

$$\Delta pH = 9.02 - 9.07 = -0.05$$

Addition	ΔрН
100 mL 0.05 M NaOH	0.04
100 mL 0.05 M HCl	- 0.05

Exercise:

Calculate the pH change that take place when 100 mL portion of:

a) 0.05 M NaOH **b)** 0.05 M HCl is added seperately to 400 mL of buffer solution of (0.1M) CH₃COOH and (0.2M) CH₃COONa ($K_a = 1.74 \times 10^{-5}$).

Hint:

$$CH_3COOH + NaOH \rightleftharpoons CH_3COONa + H_2O$$

$$CH_3COO^- + HCl \rightleftharpoons CH_3COOH$$

Preparation of buffer:

To prepare a buffer, it is to choose the acid with the pK_a close to the desired <u>pH</u>. Usually, buffers have a useful <u>pH</u> range = pK_a \pm 1, but the closer it is to the weak acid's pKa, is the better.

Example:

Describe how you might prepare approximately (500 mL) of pH 4.5 buffer solution from 1 M acetic acid (CH₃COOH) and sodium acetate (CH₃COONa) (82.03 g /mole) , (Ka= 1.74×10^{-5}) .

Solution:

For acidic buffer(pH= 4.5)

$$CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$$

$$pH = pKa + log \frac{c_{salt}}{c_{acid}}$$
 (Henderson equation for acidic buffers)

$$pKa = -log(1.74 \times 10^{-5}) = 4.76$$

$$4.5 = 4.76 + \log \frac{[CH_3COO^-]}{[CH_3COOH]}$$

$$4.5 = 4.76 + \log \frac{[CH_3COO^-]}{[1]}$$

$$4.5 - 4.76 = \log [CH_3COO^{-}] - \log 1$$

$$\log [CH_3COO^{-}] = -0.26$$

$$[CH_3COO^-] = 10^{-0.26} = 0.549 M$$

Mass of CH_3COONa needed = $Molarity(M) \times V(liter) \times Mwt$

Mass of CH₃COONa = 0.549(mol/L) x
$$\frac{500}{1000}$$
 L x 82.03(g/mol) = 22.52 g

The required buffer is to be made by dissolution of 22.52 g of CH₃COONa and completing the volume to 500 mL with 1M CH₃COOH

Buffer capacity

It is defined as the number of moles of an acid or base added to 1 liter of a buffer solution to cause its pH to change by 1 unit.

Buffer capacity depends on the amount of acid and base used to prepare the buffer. For example, if you have a 1-L buffer solution made of (1 M CH₃COOH and 1 M CH₃COONa) and a 1-L buffer solution that is (0.1 M CH₃COOH and 0.1 M CH₃COONa), although they will both have the same pH, the first buffer solution will have a greater buffer capacity because it has a higher amount of CH₃COOH and CH₃COO⁻.

To calculate buffer capacity, we use the following formula:

$$\beta = n / \Delta pH$$

 β is buffer capacity (it is unitless)

n is the number of moles of an acid or base (that were added to the buffer) per liter of the buffer

$$\mathbf{n} = \frac{\textit{No.of moles of acid or base added}}{\textit{vol of buffer(L)}}$$

 ΔpH is the difference between the initial pH of the buffer and the pH of the buffer after the acid or base is added

The higher the capacity (β), the more acid and base can be added to the buffer before its pH changes significantly.

Example:

A volume of 150 mL of 0.2 M HCl was added to 600 mL of buffer with a pH of 7.39. which gives the buffer solution a new pH of 7.03. What is the capacity of this buffer solution?

Solution:

No. of moles = Molarity (M) \times V(L)

Number of moles of HCl = $0.2 \text{ M} \times 0.150 \text{ L} = 0.03 \text{ mol}$

$$n = \frac{\textit{No.of moles of acid or base added}}{\textit{vol of buffer(L)}} = \frac{0.03 \, \textit{mole}}{0.6 \, \textit{L}} = 0.05 \, \, \textit{mol/L}$$

n = 0.05 mol/L

$$\Delta pH = |7.03 - 7.39| = 0.36$$

$$\beta = \frac{n}{\Delta pH} = \frac{0.05}{0.36} = 0.14$$

Thus, the buffer capacity of our buffer solution is 0.14.