# Information Theory and Coding Forth Stage 

## 1. Cascading of Channels

If two channels are cascaded, then the overall transition matrix is the product of the two transition matrices.
$p(z / x)=p(y / x) \cdot p(z / y)$
$(n \times k) \quad(n \times m) \quad(m \times k)$


For the series information channel, the overall channel capacity is not exceed any of each channel individually.

$$
I(X, Z) \leq I(X, Y) \quad \& \quad I(X, Z) \leq I(Y, Z)
$$

Example: Find the transition matrix $\mathrm{p}(\mathrm{z} / \mathrm{x})$ for the cascaded channel shown:


$$
\begin{aligned}
& p(Y \mid X)=\left[\begin{array}{ccc}
0.8 & 0.2 & 0 \\
0.3 & 0 & 0.7
\end{array}\right], \quad p(Z \mid Y)=\left[\begin{array}{cc}
0.7 & 0.3 \\
1 & 0 \\
1 & 0
\end{array}\right] \\
& p(Z \mid X)=\left[\begin{array}{ccc}
0.8 & 0.2 & 0 \\
0.3 & 0 & 0.7
\end{array}\right]\left[\begin{array}{cc}
0.7 & 0.3 \\
1 & 0 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
0.76 & 0.24 \\
0.91 & 0.09
\end{array}\right]
\end{aligned}
$$

Example: Two BSC is cascaded as shown:

i) Find the resultant channel matrix; then plot the final model
ii) Find the channel capacity

## Solution

$\mathrm{P}(\mathrm{Y} / \mathrm{X})=\left[\begin{array}{ll}0.8 & 0.2 \\ 0.2 & 0.8\end{array}\right]$
$\mathrm{P}(\mathrm{Z} / \mathrm{Y})=\left[\begin{array}{ll}0.6 & 0.4 \\ 0.4 & 0.6\end{array}\right]$
$\mathrm{P}(\mathrm{Z} / \mathrm{X})=\left[\begin{array}{ll}0.8 & 0.2 \\ 0.2 & 0.8\end{array}\right] \times\left[\begin{array}{ll}0.6 & 0.4 \\ 0.4 & 0.6\end{array}\right]$
$\mathrm{P}(\mathrm{Z} / \mathrm{X})=\left[\begin{array}{ll}0.56 & 0.44 \\ 0.44 & 0.56\end{array}\right]$
$\mathrm{C}=\log _{2} 2+K$

$k=\sum_{j=1}^{m} P(z j / x i) \log _{2} P(z j / x i)=\frac{0.56 \ln \mathrm{U} .56+0.44 \ln 0.44}{\ln 2}=-0.989$
$\mathrm{C}=1-0.989=0.011$ bits $/$ symbol

