Almustaqbal University College

Medical Laboratories Techniques Department
First year students

Subject : General chemistry 1 - Lecture 2A

Lecturer: Assistant professor Dr. SADIQ . J. BAQIR

Expressing concentrations By chemical units :

The mole:

Is a unit for the amount of a chemical species, always associated with a chemical formula and represents Avogadro's number (6.022×10^{23}) of particles and represented by that formula .

Molar Mass : Is the mass in grams of 1 mole of the substance ,it is calculated by summing the atomic masses of all the atoms appearing in a chemical formula .

Molar mass $=\sum$ atomic mass

Example :- Molar mass of glucose $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$:

$$
\begin{aligned}
& M_{C_{6} H_{12} O_{6}}=\sum(6 \text { mole carbon }+12 \text { mole hydrogen }+6 \text { mole oxygen }) \text { atom } \\
& M_{C_{6} H_{12} O_{6}}=6 \times 12.0+12 \times 1.0+6 \times 16.0=180 \mathrm{~g} / \mathrm{mole}
\end{aligned}
$$

Important Relations:-

M.wt $=\mathrm{g} / \mathrm{mole}$ or $\mathrm{mg} / \mathrm{mmole}$

No. of moles $=\frac{w t(g)}{M . w t(g)}$
Wt $(\mathrm{g})=$ No. of moles x M.wt
Mole $=10^{3} \mathrm{mmole} \quad, \quad \mathrm{mmole}=10^{-3} \mathrm{~mole}$

Example1: How many grams of $\mathrm{Na}^{+}(\mathrm{M} . \mathrm{wt}=22.99 \mathrm{~g} / \mathrm{mol})$ are contained in (25 gm) of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (M.wt $=142.0 \mathrm{~g} / \mathrm{mol}$)?

Solution:

moles of $\mathrm{Na}_{2} \mathrm{SO}_{4}\left(n_{\left.\mathrm{Na}_{2} \mathrm{SO}_{4}\right)}=\frac{\mathrm{Wt}(\mathrm{g})}{\mathrm{M} . \mathrm{Na}_{(\mathrm{g})} \mathrm{Na}_{2} \mathrm{SO}_{4}}=\frac{25.0}{142.0}=0.176\right.$
No. of moles of $\mathrm{Na}^{+}\left(n_{\mathrm{Na}^{+}}\right)=$Number of moles $\mathrm{Na}_{2} \mathrm{SO}_{4} \times 2$
No. of moles of $\mathrm{Na}^{+}\left(n_{\mathrm{Na}^{+}}\right)=0.176 \times 2=0.352$ moles Na^{+}
Wt $(\mathrm{g})=$ No. of moles x M.wt
Weight of $\mathrm{Na}^{+}(\mathrm{g})=$ moles $\mathrm{Na}^{+} \times 22.99(\mathrm{~g}) \mathrm{Na}^{+}$
Weight of $\mathrm{Na}^{+}(\mathrm{g})=0.352 \times 22.99=8.10(\mathrm{~g}) \mathrm{Na}^{+}$

Hints

-No. of moles of $\mathrm{Na}^{+}\left(n_{\mathrm{Na}^{+}}\right)$in NaCl is $=1 \times \mathrm{No}$. of moles of NaCl as
$\mathrm{NaCl} \longrightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}$
1 mole 1 mole
No. of moles of $\mathrm{Na}^{+}\left(n_{\mathrm{Na}^{+}}\right)$in $\mathrm{Na}_{3} \mathrm{PO}_{4}$ is $=3 \times \mathrm{No}$. of moles of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ as
$\mathrm{Na}_{3} \mathrm{PO}_{4} \longrightarrow 3 \mathrm{Na}^{+}+\mathrm{PO}_{4}{ }^{3-}$
1 mole 3 mole

Exercise:

How many grams of $\mathrm{Na}+(22.99 \mathrm{~g} / \mathrm{mol})$ are contained in 25 g of $\mathrm{Na}_{3} \mathrm{PO}_{4}(164 \mathrm{~g}$ /mol)?

Exercise :

1. No. of moles of $\mathrm{K}^{+}\left(n_{\mathrm{k}^{+}}\right)$in $\mathrm{K}_{2} \mathrm{SO}_{4}=$?
2. No. of moles of $\mathrm{K}^{+}\left(n_{\mathrm{k}^{+}}\right)$in $\mathbf{K N O}_{3}=$?
3. No. of moles of $\mathrm{Mg}^{2+}\left(n_{\mathrm{Mg}^{2+}}\right)$ in $\mathrm{MgSO}_{4}=$?
4. No. of moles of $\mathrm{Fe}^{3+}\left(n_{\mathrm{Fe} 3+}\right)$ in $\mathrm{FeCl}_{3}=$?
5. No. of moles of $\mathrm{Cl}^{-}\left(n_{\mathrm{Cl}-}\right)$ in $\mathrm{FeCl}_{3}=$?

Molar concentration (M):

Molarity: Number of moles of solute per liter of solution Or number of mmoles of solute per milliter of solution.

$$
\mathbf{M}=\frac{\text { number of moles of solute }}{\text { volume of solution(liter) }}
$$

Or $\quad \mathbf{M}=\frac{\text { number of mmole of solute }}{\text { volume of solution } \mathrm{mL}}$

Molarity calculations:

$\operatorname{Molarity}(\mathbf{M})=\frac{\text { No.of moles }}{\text { volume }(\mathrm{L})}=\frac{\frac{\mathrm{wt}_{(g)}}{M . \mathrm{wt}}}{\mathrm{~V}_{\mathrm{L}}}$	
$\operatorname{Molarity}(\mathbf{M})=\frac{\mathrm{wt}_{(\mathrm{g})}}{\mathrm{M.wt} \times V_{\mathrm{L}}}$	$\mathrm{V}_{\mathrm{L}}=\frac{\mathrm{V}_{\mathrm{mL}}}{1000}$
$\begin{aligned} & \operatorname{Molarity}(M)=\frac{\mathrm{wt}_{(\mathrm{g})}}{\mathrm{M} . \mathrm{wt} \times \frac{\mathrm{vLL}}{1000}} \\ & \operatorname{Molarity}(M)=\frac{\mathrm{wt}_{(\mathrm{g})} \times \mathbf{1 0 0 0}}{\mathrm{M} . \mathrm{wt} \mathrm{x} V_{\mathrm{mL}}} \end{aligned}$	

Example: calculate the molar concentration of KNO_{3} aqueous solution that contains (2.02 g) of $\mathrm{KNO}_{3}(101 \mathrm{~g} / \mathrm{mole})$ in $(2.0 \mathrm{~L})$ of solution?

Solution:

$\operatorname{Molarity}(M)=\frac{\mathrm{wt}_{(\mathrm{g})}}{\mathrm{M.wt} \mathrm{x} \mathrm{V}_{\mathrm{L}}}=\frac{2.02_{(\mathrm{g})}}{101 \times 2.0 \mathrm{~L}}=0.1 \mathrm{M}$
or
$\operatorname{Molarity}(\mathrm{M})=\frac{\mathrm{wt}_{(\mathrm{g})} \times 1000}{\mathrm{M} . \mathrm{wt} \times \mathrm{V}_{\mathrm{mL}}}=\frac{2.02_{(\mathrm{g})} \times 1000}{101 \times 2000 \mathrm{~mL}}=0.1 \mathrm{M}$

Preaparation of molar solutions

Molarity represents the number of moles of solute in one liter of solution or number of mmole in one mililiter .
e.g: a sulfuric acid($98 \mathrm{~g} / \mathrm{mol}$) solution that has an analytical concentration of (1.0M) can be prepared by dissolving (1.0 mole) or (98 g) of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in water and dilution to exactly (1.0 L).

$$
\left\{\operatorname{Molarity}(\mathrm{M})=\frac{\text { No.of moles }}{\text { Vol. }(L)}=\frac{1 \text { mole }}{1 L}=1 \mathrm{M}\right\}
$$

* Example: Describe the preparation of (2.00 liter) of $(0.18 \mathrm{M}) \mathrm{BaCl}_{2}$ from $\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$ ($244.3 \mathrm{~g} / \mathrm{mole}$).

Solution:
$\mathrm{BaCl}_{2} \mathbf{2} \mathbf{H}_{\mathbf{2}} \mathrm{O} \rightarrow \mathbf{B a C l}_{\mathbf{2}}+\mathbf{2} \mathbf{H}_{\mathbf{2}} \mathrm{O}$
1mole 1mole 2mole
Each (1 mole $\mathrm{BaCl}_{2} 2 \mathrm{H}_{2} \mathrm{O}$) gives (1 mole BaCl_{2}).
for 2 liter solution we have
Molarity $(\mathbf{M})=\frac{\text { No.of moles }}{\text { volume }(\mathrm{L})}$
No. of moles $=$ molarity Mx volume (L)
No. of moles BaCl_{2} in Solution $=0.18 \frac{\text { moles } \mathrm{BaCl}_{2}}{\mathrm{~L}} \times 2.00 \mathrm{~L}=0.36 \mathrm{~mole}\left(\mathrm{BaCl}_{2}\right)$
Then No. of moles $\mathrm{BaCl}_{2} 2 \mathrm{H}_{2} \mathrm{O}$ needed $=0.36$ moles

The mass of $\left(\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}\right)=0.36 \mathrm{~mole} \times 244.3 \mathrm{~g} / \mathrm{mol}=87.95 \mathrm{~g} \mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$
The solution is prepared by dissolving $87.95 \mathrm{gm} \mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$ in water and complete the volume to 2.00 L

Example:

Describe the preparation of 500 mL of $0.0740 \mathrm{M} \mathrm{Cl}^{-}$solution from solid BaCl_{2} ($208 \mathrm{~g} / \mathrm{mol}$).

Solution:
$\mathrm{BaCl}_{2} \quad \rightarrow \quad \mathrm{Ba}^{2+}+2 \mathrm{Cl}^{-}$
1 mole 2 moles
No of moles $=$ Molarity (mol /liter) x Volume (Liters)
moles $\mathrm{Cl}^{-}=0.0740 \times 0.5=0.037$ moles Cl^{-}
No.of moles BaCl_{2} needed $=\frac{1}{2}\left(\mathrm{No}\right.$. of moles of $\left.\mathrm{Cl}^{-}\right)$
No . moles BaCl_{2} needed $=\frac{0.037}{2}=0.0185$ mole
weight of $\mathrm{BaCl}_{2}=$ No. of moles $\mathrm{BaCl}_{2} \times \mathrm{M}$ wt (208)
weight of $\mathrm{BaCl}_{2}=0.0185 \times 208=3.85$ grams
Then the required solution is prepared by dissolving 3.85 g of BaCl_{2} in water and dilute to $0.500 \mathrm{~L}(500 \mathrm{~mL})$.

Example:

Calculate the number of molecules (particles) of $\mathrm{NaCl}(58.5 \mathrm{~g} / \mathrm{mol})$ present in 1liter of 0.1 M solution.
Answer:
Each 1 mole contains Avogadro's number (6.022×10^{23}) of molecules then
No. of moles $=\operatorname{Molarity}(\mathrm{M}) \times V($ liter $)=0.1 \times 1=0.1$ mole
No. of moles $=\frac{\text { No.of molecules }}{6.02 \times 10^{23}}$

No. of molecules $=$ No. of moles $\times 6.02 \times 10^{23}=0.1 \times 6.02 \times 10^{23}$
No. of molecules $=6.02 \times 10^{22}$ molecules
Excercise:
Describe the preparation of 700 mL of $0.0740 \mathrm{M} \mathrm{Cl}^{-}$solution from solid $\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}(244.3 \mathrm{~g} / \mathrm{mol})$.

Conversion to molarity:

1. Conversion of $\left(\frac{w}{v}\right) \%$ to Molarity(M)

Molarity $(\mathbf{M})=\frac{\left(\frac{w}{v}\right) \% \mathbf{x 1 0}}{\text { M.wt }}$
2.Conversion of Molarity(M) to $\mathbf{m m o l} / \mathrm{L}$

$$
\mathrm{mmol} / \mathrm{L}=\operatorname{Molarity}(\mathrm{M}) \times 1000
$$

3.Conversion of $\mathbf{m m o l} / \mathrm{L}$ to $\mathrm{mg} / \mathrm{dl}$

$\mathrm{C}_{\mathrm{mg} / \mathrm{dl}}=\frac{\mathrm{mmol} / \mathrm{dl} \times \mathrm{Mwt}}{10}$

Example:

Calculate the concentration of the solution that is $20(\mathrm{w} / \mathrm{v}) \%$ of $\mathrm{KCl}(74.5 \mathrm{~g}$
/mol) in:
a. Molarity (M)
b. $\mathbf{m m o l} / \mathrm{L}$
c. $\mathrm{mg} / \mathrm{dl}$
solution:
a.
$\operatorname{Molarity}(\mathrm{M})=\frac{\left(\frac{\mathrm{w}}{\mathrm{V}}\right) \% \times 10}{\mathrm{M} . \mathrm{wt}}$
$\operatorname{Molarity}(M)=\frac{20 \times 10}{74.5}=2.68 \mathrm{M}$
$\operatorname{Molarity}(\mathrm{M})=\frac{\mathrm{wt}_{(\mathrm{g})} \times 1000}{\mathrm{M} . \mathrm{wt} \mathrm{V}_{\mathrm{mL}}}=\frac{20_{(\mathrm{g})} \times 1000}{74.5 \times 100_{\mathrm{mL}}}=2.68 \mathrm{M}$
b. $\mathrm{C}_{\mathrm{mmol} / \mathrm{L}}=\operatorname{Molarity}(\mathrm{M}) \times 1000$
$\mathrm{C}_{\mathrm{mmol} / \mathrm{L}}=2.68 \times 1000=2680 \mathrm{mmol} / \mathrm{L}$
c. $\mathrm{C}_{\mathrm{mg} / \mathrm{dl}}=\frac{\mathrm{mmol} / \mathrm{dl} \times \mathrm{Mwt}}{10}=\frac{2680 \times 74.5}{10}=19966 \mathrm{mg} / \mathrm{dl}$ $\mathrm{C}_{\mathrm{mg} / \mathrm{dl}}=19966 \mathrm{mg} / \mathrm{dl}$

Exercises:

1.Which of the following contains the largest number of molecules :
a) 66 g of $\mathrm{CO}_{2}(44 \mathrm{~g} / \mathrm{mol})$
b) 80 g of $\mathrm{NaOH}(40 \mathrm{~g} / \mathrm{mol})$
c) 32 g of $\mathrm{CH}_{3} \mathrm{OH}(\mathbf{3 2} \mathrm{g} / \mathrm{mol})$
2. Describe the preparation of 500 mL of $0.0740 \mathrm{M} \mathrm{Cl}^{-}$aqueous solution from solid $\mathrm{CaCl}_{2} \mathbf{2 H}_{\mathbf{2}} \mathrm{O}(\mathbf{1 4 7} \mathrm{g} / \mathrm{mol})$.
3. Calculate the weight in grams of solid $\mathrm{K}_{2} \mathrm{SO}_{4}(174.26 \mathrm{~g} / \mathrm{mol})$ required to prepare 500 mL of 0.04 M aqueous solution of K^{+}.
4. Calculate the weight in grams of solid $\mathrm{NaCl}(58.5 \mathrm{~g} / \mathrm{mol})$ required to prepare 250 mL of $\mathbf{0 . 0 4} \mathrm{M}$ aqueous solution of Na^{+}.
5. Calculate the concentration of the solution that is $5(\mathrm{w} / \mathrm{v}) \%$ of $\mathrm{NaCl}(58.5 \mathrm{~g}$ /mol) in: a. Molarity(M) b. mmol/L c. mg/dl

