ALMUSTAQBAL UNIVERSITY COLLEGE

Biomedical Engineering Department
Stage : Second year students
Subject : Chemistry 1 - Lecture 8
Lecturer: Assistant professor Dr. SADIQ . J. BAQIR

Chemical and ionic equilibrium:

There are two types of reactions:

1) Reversible reaction, $\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D}$

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
$$

2) Irreversible reaction, $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}$

$$
\mathrm{CaCO}_{3(\mathrm{~s})}+2 \mathrm{HCl}_{(\mathrm{l})} \rightarrow \mathrm{CO}_{2} \uparrow(\mathrm{~g})+\mathrm{CaCl}_{2(\mathrm{~s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

Generally , most of the chemical reactions are considered as reversible reactions.
There are two kinds of systems :
a) Homogenous reactions : chemical reactions in which the reactants and products are in the same phase (solid, liquid or gas)

$$
\begin{array}{rl}
& \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{~g}) \\
2 & \mathrm{KOH}(\mathrm{l})+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{l}) \rightarrow \mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{array}
$$

b) Heterogeneous reactions :

Chemical reactions in which the reactants and products have more than one phase.

$$
\mathrm{FeS}(\mathrm{~s})+\mathrm{HCl}(\mathrm{l}) \rightarrow \mathrm{FeCl}_{2}(\mathrm{l})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})
$$

Equilibrium constant (K) :

A numerical quantity that relate the concentration of reactants and products in a chemical reaction to one another.

For the chemical reaction : $\mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{cC}+\mathrm{dD}$
According to mass action law which states that (The rate of chemical reaction is directly proportional with formula concentration of reaction substances each raise to the power indicated by the number of ion or molecule appearing in the balanced equation of the reaction). Then:
$\mathrm{V}_{\mathrm{f}} \propto[\mathrm{A}]^{\mathrm{a}},[\mathrm{B}]^{\mathrm{b}} \quad(\mathrm{f}=$ forward $)$
$\mathrm{V}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}}[\mathrm{A}]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}}$
$\mathrm{V}_{\mathrm{b}} \propto[\mathrm{C}]^{\mathrm{c}},[\mathrm{D}]^{\mathrm{d}} \quad(\mathrm{b}=$ backward $)$
$\mathrm{V}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}}[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}}$
At equilibrium state : ($\left.\mathrm{V}_{\mathrm{f}}=\mathrm{V}_{\mathrm{b}}\right)$
$\mathrm{K}_{\mathrm{f}}[\mathrm{A}]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}}=\mathrm{K}_{\mathrm{b}}[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}}$
$\frac{K_{f}}{K_{b}}=\mathrm{K}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$
$\mathrm{K}=$ equilibrium constant
Example:
Write the equilibrium constant expression for each of the reversible reactions:
a. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HF}(\mathrm{g})$
b. $\quad 2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})$
solution:
a. $\mathrm{K}_{\mathrm{eq}}=\frac{[H F]^{2}}{\left[H_{2}\right]\left[F_{2}\right]}$
b. $\mathrm{Keq}=\frac{\left[\mathrm{N}_{2}\right]\left[\mathrm{O}_{2}\right]^{2}}{\left[\mathrm{NO}_{2}\right]^{2}}$

Example:
A container holds the following mixture at equilibrium:

$$
\begin{aligned}
& {\left[\mathrm{NH}_{3}\right]=0.25 \mathrm{M} \quad\left[\mathrm{H}_{2}\right]=1.91 \mathrm{M} \quad\left[\mathrm{~N}_{2}\right]=0.11 \mathrm{M}} \\
& 3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
\end{aligned}
$$

Calculate the equilibrium constant of the reaction.
Solution:
Keq $=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{H}_{2}\right]^{3}\left[\mathrm{~N}_{2}\right]}=\frac{[0.25]^{2}}{[1.91]^{3}[0.11]}=0.082$

Exercise:

Given the equilibrium reaction: $2 \mathrm{HI} \rightleftharpoons \mathrm{H}_{2}+\mathrm{I}_{2}$
Calculate the molar concentration of I_{2} in the equilibrium mixture Where $\left[\mathrm{H}_{2}\right]=1.0 \times 10^{-2} \mathrm{M}$ and $[\mathrm{HI}]=4.0 \times 10^{-2} \mathrm{M}$ and $\mathrm{Keq}=10$.

Le chatelier principle :

The position of chemical equilibrium will always shift in a direction that tends to remove the effect of the applied stress .

Factors effecting the reactions at equilibrium :

1) Nature of reactants
2) Temperature
3) Concentration

4) Pressure (in gas reactions)

Some familiar equilibrium constant expressions :

$\mathrm{Kw}=$ ion product (or ionization) constant for water.
Ksp $=$ solubility product constant.
$\mathrm{K}_{\mathrm{a}}=$ ionization (or dissociation) constant of a weak acid.
$\mathrm{K}_{\mathrm{b}}=$ ionization (or dissociation) constant of a weak base.

Ion product constant for water (Kw) :

Aqueous solutions contains small amount of hydronium ions $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and hydroxide $\left[\mathrm{OH}^{-}\right]$ions as a consequence of the dissociation reaction :

$$
\begin{aligned}
& 2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \\
& \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \\
& \text {(base) } \quad \text { (acid) }
\end{aligned}
$$

$\mathrm{H}_{2} \mathrm{O}$ acid molecule gives H^{+}to $\mathrm{H}_{2} \mathrm{O}$ base molecule to produce $\mathrm{H}_{3} \mathrm{O}^{+}$ions
$\mathrm{K}=\frac{[\mathrm{H} 3 \mathrm{O}+\mathrm{l} / \mathrm{OH}-]}{[\mathrm{H} 2 \mathrm{O}]^{2}}$
$\mathrm{K}\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=\mathrm{Kw}$

$$
\mathrm{Kw}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14} \mathrm{~mol}^{2} / \mathrm{L}^{2} \text { at } 25^{\circ} \mathrm{C}
$$

Kw is temperature dependant it increases with temperature rise, and decreases with its decrease.

Variation of Kw with temperature :

Temperature ${ }^{\circ} \mathrm{C}$	Kw
0.0	1.14×10^{-15}
25	1.01×10^{-14}
40	2.92×10^{-14}
50	5.47×10^{-14}
70	2.30×10^{-13}
100	4.90×10^{-13}

Kw is used only for water.

Example :

Calculate the hydronium $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and hydroxide ion $\left[\mathrm{OH}^{-}\right]$concentrations of pure water at $25^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$?

Answer:
Because OH^{-}and $\mathrm{H}_{3} \mathrm{O}^{+}$are formed from the dissociation of water only, then their concentrations are equal,

$$
2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}
$$

then : $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
$\mathrm{Kw}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$
Subsititution in the above equation gives :

$$
\begin{array}{lcc}
\mathrm{Kw}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2} & \text { also } & \mathrm{Kw}=\left[\mathrm{OH}^{-}\right]^{2} \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{K_{w}} \quad \text { and }} & {\left[\mathrm{OH}^{-}\right]=\sqrt{K_{w}}} \\
\text { At } 25^{\circ} \mathrm{C} \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{K_{w}}=\sqrt{1.01 \times 10^{-14}}=1.01 \times 10^{-7} \\
\mathrm{pH}=-\log \left(1.01 \times 10^{-7}\right)=7.00 &
\end{array}
$$

$\left[\mathrm{OH}^{-}\right]=\sqrt{K_{w}}=\sqrt{1.01 \times 10^{-14}}=1.01 \times 10^{-}$
At $100^{\circ} \mathrm{C}$

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{K_{w}}=\sqrt{49 \times 10^{-14}}=7.0 \times 10^{-7}} \\
& \mathrm{pH}=-\log \left(7 \times 10^{-7}\right)=6.15 \\
& {\left[\mathrm{OH}^{-}\right]=\sqrt{K_{w}}=\sqrt{49 \times 10^{-14}}=7.0 \times 10^{-7}}
\end{aligned}
$$

Exercise:

Calculate the change in pH of pure water on heating from $25^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}(\mathrm{Kw}=$ 5.47×10^{-14}).

Equilibrium involving sparingly soluble ionic solids :
Most sparingly soluble salts are dissociated in saturated aqueous solution .
e.g: $\mathrm{AgCl}_{(\mathrm{s})} \rightleftharpoons \mathrm{Ag}_{(\mathrm{aq})}^{+}+\mathrm{Cl}_{(\mathrm{aq})}$
$\mathbf{K}=\frac{[A g+][C l-]}{[A g C l(s)]}$
$\mathrm{K}\left[\mathrm{AgCl}_{(\mathrm{s})}\right]=\mathrm{Ksp}=\left[\mathrm{Ag}^{+}{ }_{\mathrm{qq}}\right]\left[\mathrm{Cl}_{\mathrm{aq}}{ }^{\mathrm{aq}}\right]$
Where Ksp = solubility product constant (applied only for saturated solution) .

Example:
How many grams of $\mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2}$ ($487 \mathrm{~g} / \mathrm{mol}$) can be dissolved in 500 mL of water at $25^{\circ} \mathrm{C}$? Ksp for $\mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2}=1.57 \times 10^{-9}$.
$\mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2} \rightleftharpoons \mathrm{Ba}^{2+}+2 \mathrm{IO}_{3}{ }^{-}$
S 2 S

$$
\begin{aligned}
& \mathrm{Ksp}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{IO}_{3}^{-}\right]^{2} \\
& \mathrm{Ksp}=(\mathrm{S})(2 \mathrm{~S})^{2}=1.57 \times 10^{-9}=4 \mathrm{~S}^{3} \\
& \mathrm{~S}=\sqrt[3]{\frac{1.57 \times 10^{-9}}{4}}=7.32 \times 10^{-4} \mathrm{~mole} / \mathrm{L} \text { or }(\mathrm{M})=\text { Solubility }
\end{aligned}
$$

No. of moles $=\frac{\text { Weight }(\mathrm{g})}{\text { Molar mass }(\mathrm{g} / \mathrm{mol})}$
Weight $=$ No. of moles \times Molar mass $(\mathrm{g} / \mathrm{mol})$
As Molarity $(\mathrm{M})=\frac{\text { No. of moles }}{\text { Volume }(\text { liters })}$
Then No. of moles $=$ Molarity x Volume (liters)
Substituting for the No. of moles gives:
$\frac{\text { Weight }(\mathrm{g})}{\text { Molar mass (g/mol) }}=$ Molarity x Volume (liters)
Weight (g) = Molarity x Volume (liters) x Molar mass (g / mol)

Weight in grams of $\mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2}=7.32 \times 10^{-4} \mathrm{~mol} /$ liter $\times \frac{500}{1000}$ Liter $\times 487 \mathrm{~g} / \mathrm{mol}=$ 0.178 g

Then weight in grams of $\mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2}$ that is dissolved in 500 mL water $=0.178 \mathrm{~g}$
Example :
Calculate the weight in grams of $\mathrm{AgCl}(143.3 \mathrm{~g} / \mathrm{mol})$ that can be dissolved in 600 mL of water? Ksp for $\mathrm{AgCl}=1.8 \times 10^{-10}$.
$\mathrm{AgCl} \rightleftharpoons \mathbf{A g}^{+}+\mathrm{Cl}^{-}$

$$
\mathbf{S} \quad \mathbf{S}
$$

$\mathbf{K s p}=\left[\mathbf{A g}^{+}\right]\left[\mathbf{C I}^{-}\right]$
$K s p=(S)(S)=1.8 \times 10^{-10}=S^{2}$

$$
S=\sqrt{1.8 \times 10^{-10}}=1.34 \times 10^{-5} \mathrm{~mole} / \mathrm{L} \text { or }(M)=\text { solubility }
$$

Weight $(\mathrm{g})=$ Molarity \mathbf{x} Volume (liters) \times Molar mass ($\mathrm{g} / \mathrm{mol}$)
Weight in grams of $\mathrm{AgCl}=1.34 \times 10^{-5} \mathrm{~mol} /$ liter $\times \frac{600}{1000}$ Liter $\times 143.32 \mathrm{~g} / \mathrm{mol}=$ $1.15 \times 10^{-3} \mathrm{~g}=1.15 \mathrm{mg}$

Calculating Solubility Product Constant (Ksp) From Solubility

Example :

The weight of the sparingly soluble substance $\mathrm{AgBr}(187.8 \mathrm{~g} / \mathrm{mol})$ that dissolves in 500 mL of water to form a saturated solution is $6.65 \times 10^{-5} \mathrm{~g}$. Calculate the Ksp of AgBr .

Answer:
$\mathrm{AgBr} \rightleftharpoons \mathrm{Ag}^{+}+\mathrm{Br}^{-}$

$$
\mathbf{S} \quad \mathbf{S}
$$

S = molar solubility = Molarity
Molarity of $\operatorname{AgBr}(M)=\frac{w t(g) \times 1000}{M . w t \times V m l}$
Molarity of $\operatorname{AgBr}(\mathrm{M})=\frac{6.65 \times 10^{-5} \times 1000}{187.8 \times 500}=7.08 \times 10^{-7}=\mathrm{S}$
$\mathbf{K s p}=\left[\mathbf{A g}^{+}\right]\left[\mathbf{B r}^{-}\right]$
$\mathbf{K s p}=(\mathbf{S})(\mathbf{S})=\mathbf{S}^{\mathbf{2}}$
$K s p=\left(7.08 \times 10^{-7}\right)^{2}=5.01 \times 10^{-13}$

EXAMPLE:

The solubility of barium fluoride, BaF_{2}, is $7.94 \times 10^{-3} \mathrm{M}$ at $25^{\circ} \mathrm{C}$. Calculate its solubility product constant, $\mathrm{K}_{\text {sp }}$,

SOLUTION

```
\(\mathrm{BaF}_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Ba}^{2+}(\mathrm{aq})+2 \mathrm{~F}^{-}(\mathrm{aq})\)
    \(S \quad 2 S\)
```

Solubility $=\left[\mathrm{Ba}^{2+}\right]=(\mathrm{S})=7.94 \times 10^{-3} \mathrm{M}$
$K_{\text {sp }}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{F}^{-}\right]^{2}$
$K_{\text {sp }}=(S)(2 S)^{2}=4 S^{3}$
$\mathrm{K}_{\text {sp }}=4\left(7.94 \times 10^{-3} \mathrm{M}\right)^{3}$
$K_{\text {sp }}=2 \times 10^{-6}$

Estimation of precipitate formation

Example:

Will a precipitate form when 20 mL of $0.01 \mathrm{M} \mathrm{AgNO}_{3}$ solution is mixed with 2 Liter of $0.002 \mathrm{M} \mathrm{K}_{2} \mathrm{CrO}_{4}$. the Ksp for $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ is 1.1×10^{-12}
$2 \mathrm{AgNO}_{3}+\mathrm{K}_{2} \mathrm{CrO}_{4} \rightarrow \mathrm{Ag}_{2} \mathrm{CrO}_{4}+2 \mathrm{KNO}_{3}$
$\mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s}) \quad \rightleftharpoons \quad \mathbf{2} \mathrm{Ag}^{+}+\mathrm{CrO}_{4}{ }^{2-}$
$\mathbf{K s p}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CrO}_{4}{ }^{2-}\right]=1.1 \times 10^{-12}$
Having AgNO_{3} gives Ag^{+}and $\mathrm{K}_{2} \mathrm{CrO}_{4}$ gives $\mathrm{CrO}_{4}{ }^{2-}$
To calculate the ionic product (I.P) of $[\mathrm{Ag}+]^{2}\left[\mathrm{CrO}_{4}{ }^{2-}\right]$ after mixing
$\mathrm{M}_{1} \mathrm{~V}_{1}$ (before mixing) $=\mathrm{M}_{2} \mathrm{~V}_{2}$ (after mixing $)$
$\left[\mathrm{Ag}^{+}\right]=\frac{M 1 V 1}{V 2}=\frac{(0.01 \mathrm{M})(20 \mathrm{~mL})}{(2000+20) \mathrm{mL}}=9.9 \times 10^{-5} \mathrm{M}$ $\left[\mathrm{CrO}_{4}{ }^{2-}\right]=\frac{M 1 V 1}{V 2}=\frac{(0.002 \mathrm{M})(2000 \mathrm{~mL})}{(2000+20) \mathrm{mL}}=0.002 \mathrm{M}$
I.P $=[\mathrm{Ag}+]^{2}\left[\mathrm{CrO}_{4}{ }^{2-}\right]=\left(9.9 \times 10^{-5}\right)^{2}(0.002)=2.0 \times 10^{-11}$

As I.P > Ksp then precipitate will form

Notes:

1. If ionic product (I.P) $<$ Ksp (dissolution Occurs)
2. If ionic product (I.P) $=$ Ksp (equilibrium state) saturation
3. If ionic product (I.P) >Ksp (precipitation Occurs)

Example:

What pH is required to just precipitate $\mathrm{Fe}(\mathrm{OH})_{3}\left(\mathrm{Ksp}=4 \times 10^{-38}\right)$ from $0.1 \mathrm{M} \mathrm{FeCl}_{3}$ solution?

Answer:

$$
\begin{aligned}
& \mathrm{Fe}(\mathrm{OH})_{3} \rightleftharpoons \mathrm{Fe}^{3+}+3 \mathrm{OH}^{-} \\
& \mathrm{FeCl}_{3} \quad \rightarrow \quad \mathrm{Fe}^{3+}+3 \mathrm{Cl}^{-} \\
& 0.1 \text { mole } 0.1 \text { mole } \\
& k s p=\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{OH}^{-}\right]^{3}=4 \times 10^{-38} \\
& {[0.1]\left[\mathrm{OH}^{-}\right]^{3}=4 \times 10^{-38}} \\
& {\left[\mathrm{OH}^{-}\right]=\sqrt[3]{\frac{4 \times 10^{-38}}{0.1}}=7 \times 10^{-13}} \\
& \mathrm{pOH}=-\log \left(7 \times 10^{-13}\right)=12.2 \\
& \mathrm{pH}=14-12.2=1.8
\end{aligned}
$$

