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1.1 linear Restoring Force. Harmonic Motion

One of the most important cases of rectilinear motion, from a practical
as well as from a theoretical standpoint, is that produced by a linear restoring
force. This is a force whose magnitude is proportional to the displacement
of a particle from some equilibrium position and whose direction is always
opposite to that of the displacement. Such a force is exerted by an elastic
cord or by a spring obeying Hooke’s law

= —k(X —a) = —ka .

where X is the total length, and a is the unstretched (zero load) length of the
spring. The variable £ = X — a is the displacement of the spring from its
equilibrium length. The proportionality constant & is called the stiffness.
Let a particle of mass m be attached to the spring, as shown in Figure 2.4(a);
the force acting on the particle is that given by Equation 4 Let the
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FIGURE 2.4 Illustrating the linear harmonic oscillator by means of a block of
mass m and a spring. (a) Horizontal motion; (b) vertical motion,




same soring be held vertically, supporting the same particle, as shown in
Figure 2.4(b). The total force now acting on the particle is

= —k(X — a) + mg

where the positive direction is downward. Now, in the latter case, let us
measure z relative to the new equilibrium position; that 1s, let z = X —
a — mg/k. This gives again F = —kz, and so the differential equation of
motion in either case is

mi+ kx =0 _2,

The above differential equation of motion is met in a wide variety of physical
problems. In the particular example that we are using here, the constants
m and k refer to the mass of a body and to the stiffness of a spring, respectively,
and the displacement z is a distance. The same equation is encountered, as
we shall see later, in the case of a pendulum, where the displacement is an
angle, and where the constants involve the acceleration of gravity and the
length of the pendulum. Again, in certain types of electrical circuits, this
equation is found to apply, where the constants represent the circuit parame-
ters, and the auantity z represents electric current or voltage.

Equation 2 ) can be solved in a number of ways. It is one example of
an important class of differential equations known as linear differential equa-
tions with constant coefficients.® Many, if not most, of the differential equations
of physics are second-order linear differential equations. To solve Equation
( 2  we shall employ the trial method in which the function Ae¢* is the trial
solution where ¢ is a constant to be determined. If x = Ae® is, in fact, a
solution, then for all values of ¢ we must have

2
m & (Aew) + K(Aew) = 0

which reduces, upon canceling the common factors, to the equation”’

mgt + k =0

q = 1 m— o

# The general nth-order equation of this type is

that is

d*z dz
cna:-l- e +c=d—ti +Cla + ¢ = b(t)

The equation is called homogeneous if b = 0,
® This equation is called the auxiliary equation.




where © = V —1, and wo = Vk/m. Now, for linear differential equations,
solutions are additive. (That is, if f; and f. are solutions then the sum
fi + f2is also a solution.) The general solution of Equation 2 ) is then

r = A+€:'wot + A_e—iwot 3 )
Since e™ = cos u + < sin u, alternate forms of the solution are

x = asin wel + b cos wol

xr = A cos (wit + 6) T8

The constants of integration in the above solutions are determined from the
initial conditions. That all three expressions are solutions of Equation (2.34)
may be verified by direct substitution. The motion is q sinusoidal oscillation
of the displacement . For this reason Equation ( * is often referred to as
the differential equation of the harmonic oscillator or the linear oscillator.
The coefficient wo is called the angular frequency. The maximum value
of z is called the amplitude of the oscillation; it is the constant A in Equation
( = , or (a® 4+ )2 in Equation « 4 ). The period T, of the oscillation
is the time required for one complete cycle, as shown in Figure 2.5; that is,
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FIGURE 2.5 Graph of displacement versus time for the harmonic oscillator.

the period is the time for which the product ot increases by just 2a, thus
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The linear frequency of oscillation f, is defined as the number of cycles in unit
time, therefore

wo = 27Tfo
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It is common usage to employ the word ‘““frequency’’ for either the angular or
the linear frequency; which one is meant is usually clear from context.

EXAMPLE

A light spring is found to stretch an amount b when it supports a block
of mass m. If the block is pulled downward a distance [ from its equilibrium
position and released at time ¢ = 0, find the resulting motion as a function
of t. First, to find the spring stiffness, we note that in the static equilibrium
condition
so that

= mg
k=%

Hence the angular frequency of oscillation is

k

In order to find the constants for the equation of motion

x = A cos (wl + 8)
we have
=1 =0
at time ¢ = 0. But
E = — Awo sin (wef + 8¢)
Thus
A = l 90 = 0

e~ oo (E0)

80

is the required expression.

1.2 Energy Considerations in Harmonic Motion

Consider a particle moving under a linear restoring force F = kx. let
us calculate the work W done by an external force F, in moving the particle
from the equilibrium position (x = 0) to some position . We have F, =
—F = kzx, and so




W=fFadx=f'(kx)dx=’—“x2
0 2

The work W is stored in the spring as potential energy

V(x)=W=’§“x2 8

Thus F = —dV/dx = —kx as required by the definition of V, Equation
(2.13). The total energy F is then given by the sum of the kinetic and
potential energies as

E = imi? + Skx?

We can now solve for the velocity as a function of displacement
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This can be integrated to give ¢ as a function of x as follows:

o dx _ m el
L= f NCE Iy = G \/fc—""s (A) + ¢

2FK
A =7

V(x)

in which

FIGURE 2.6 Graph of the potential energy function of the harmonic oscillator.
The turning points defining the amplitude are shown for two values of the total
energy.




and C is a constant of integration. Upon solving the integrated equation
for z as a function of ¢, we find the very same relationship as that found in
the previous section, except that we now obtain an explicit value for the
amplitude A. We could also have found the amplitude directly from the
energy equation 9 by noting that r must lie between V 2E/k and
—~V2E/k in order for £ to be real. This is illustrated in Figure 2.6 which
shows the potential energy function and the turning points of the motion for
different values of the total energy E.

From the energy equation we see that the maxirum value of &, which
we shall call ., occurs when z = 0, and so we have

E = ymon? = $hA?

vmz=J§iA=w0A




