

THE NERVOUS SYSTEM

Millions of interconnected neurons form the nervous system

Human nervous system two major parts: central nervous system and peripheral nervous system

NERVOUS SYSTEM

Brain Spinal cord

NERVOUS SYSTEM ORGANIZATION

All neurons outside the CNS

- 31 pairs spinal nerves
- 12 pairs of cranial nerves

Peripheral Nervous System

THE BRAIN - 3 MAJOR AREAS

Cerebrum (telencephalon, diencephalon,)

Cerebellum

Brainstem (midbrain, pons, medulla oblongata)

CEREBRUM

Composed of Telencephalon (Cerebral Cortex) and Diencephalon Cerebral Cortex is gray matter because nerve fibers lack white myelin coating

CEREBRAL CORTEX - 4 MAJOR LOBES

Parietal Frontal Temporal Occipital

FUNCTIONS OF THE CEREBRAL CORTEX

Intellectual processes: thought, intelligence.

Processes sensory information and integrates with past experience to produce appropriate motor response.

DIENCEPHALON - 2 MAJOR PARTS

Thalamus

- Relays stimuli received from all sensory neurons to cortex for interpretation
- Relays signals from the cerebral cortex to the proper area for further processing

Hypothalamus

Monitors many parameters

Helps maintain homeostasis Signals the pituitary via releasing factors

Signals the lower neural centers

Diencephalon

Thalamus

Midbrain 🗬

Pineal body Ventricle

Cerebellum

Pons

Medulla

Hypothalamus Corpus callosum

encephalon

- Cerebrum

`Fornix

Öptic chiasma Pituitary

Spinal cord

CEREBELLUM

Located behind the brainstem

Helps monitor and regulate movement

Integrates postural adjustments, maintenance of equilibrium, perception of speed, and other reflexes related to fine tuning of movement.

BRAINSTEM

Composed of midbrain, pons, and medulla oblongata

Maintains vegetative functioning

- Where is respiratory control center?
- Where is cardiovascular control center?

Reflexes

Midbrain

Inalamus Diencephalon Hypothalamus Corpus callosum

Cerebrum

Fornix

Pineal body Ventricle

Cerebellum

Pons

Optic chiasma Pituitary Medulla

Spinal cord —

Brain Stem

SPINAL CORD

Contains both gray and white matter Gray matter is H-shape in core of cord

Central canal

White matter

Cross section thru Spinal Cord

Anterior column

Gray matter

GRAY MATTER

Regions of brain and spinal cord made up primarily of cell bodies and dendrites of nerve cells

Interneurons in spinal cord

small nerves which do not leave the spinal cord

Terminal portion of axons

WHITE MATTER

Contains tracts or pathways made up of bundles of myelinated nerves

Carry ascending and descending signals

- Ascending nerve tract from sensory receptors through dorsal root, up cord to thalamus, to cerebral cortex
- Pyramidal tract transmits impulses downward eventually excites motoneurons control muscles.
- Extrapyramidal originate in brain stem descend to control posture.

DESCENDING NERVE TRACTS

DESCENDING: LATERAL,

Figure 19.5. Descending spiral cord tracts from the brain. (From Bear MF, et al. Neuroscience: exploring the brain. Balamore: Williams & Wilkins, 1996.)

Deputyre @ 2001 Lapmont Williams & Wilking

PERIPHERAL NERVOUS SYSTEM

Copyright @ 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

Thirty-one pairs of spinal nerves & 12 pairs of cranial nerves.

Each spinal nerve is a mixed nerve containing:

- Somatic afferent
- Visceral afferent
- Somatic efferent
- Visceral efferent

Which is a motor fiber?

SOMATIC NERVOUS SYSTEM

Somatic afferent (sensory): carry sensations from periphery to spinal cord. Includes exteroceptive (pain, temperature, touch) & proprioceptive.

Somatic efferent (motor): communicate from spinal cord to skeletal muscles.

AUTONOMIC NERVOUS SYSTEM SUBDIVISIONS

Sympathetic

- responsible for increasing activity in most systems (except GI)
- adrenergic fibers release epinephrine

Parasympathetic

- responsible for slowing activity in most systems (except GI)
- cholinergic fibers release acetylcholine

Comparison of effects of sympathetic and parasympathetic activation on end organs		
End organ	Sympathetic effects	Parasympathetic effects
Skeletal muscle	Increase blood flow	Decrease blood flow
Ventilation	Increase	Decrease
Sweat glands	Increase perspiration	No effect
Heart	Increase force and contraction rate	Decrease force and contraction rate
GI tract motility	Decrease	Increase
Eyes	Dilate pupils	Constrict pupils
Secretion of digestive juices	Decrease	Increase
Blood pressure	Increase mean pressure	Decrease mean pressure
Airways	Increase diameter	Decrease diameter

Copyright © 2006 Lippincott Williams & Wilkins.

AUTONOMIC REFLEX

Monosynaptic reflex arc Knee jerk response

COMPLEX REFLEXES

Involve multiple synapses Crossed extensor reflex

MOTOR UNIT

A single motor neuron and all of the muscle fibers which it innervates. Represents functional unit of movement. Ratio of muscle fibers to nerve relates to muscle's movement

function.

NEURONS

Two basic types

- 1. Motor
- 2. Sensory

Three basic parts

- 1. Axons
- 2. Dendrites
- 3. Soma or Cell Bodies

SENSORY NERVES

Enter the spinal cord on the dorsal side

Cell bodies lie outside the spinal cord in Dorsal Root Ganglia

MOTOR NERVES

Exit the spinal cord on the ventral side

Cell bodies lie within grey matter of spinal cord

Somatic

innervates skeletal muscle

Autonomic (visceral)

innervates organs / smooth muscle

NEURON PART: AXONS

Carry impulses away from the cell body

MYELIN

Schwann cells wrapped around the axon of some neurons

- appear as multiple lipid-protein layers
- are actually a continuous cell

increase the speed of action potential conduction

NODES OF RANVIER

Gaps between Schwann Cells

- impulse jumps from node to node
- saltatory conduction

Site of an Node of Ranvier action potential

əlin

Axon

NEURON PARTS: DENDRITES AND CELL BODY

Dendrite: receives stimuli and carry it to the cell body

Cell body: site of cellular activity

SYNAPSE

Junction between the dendrites of one neuron and the axon of a second neuron Nerves communicate by releasing chemical messenger at synapse

SYNAPSE

Important neurotransmitters: Monoamines Neuropeptides Nitric oxide

MOTOR NERVES - SIZE

Alpha motor nerves

- Larger fibers
- Conduct impulses faster
- Innervate regular muscle fibers

Gamma Motor nerves

- smaller fibers
- conduct impulses more slowly
- Innervate proprioceptors such as muscle spindles

NERVE PROPERTIES RELATED TO FUNCTION

Irritability

able to respond to stimuli

Conductivity

able to transmit electrical potential along the axon

RESTING MEMBRANE POTENTIAL

Difference in charge between the inside and outside of the cell

- sodium in greater concentration outside
- potassium in greater concentration inside
- anions in greater concentration inside
- membrane permeability greater for potassium than sodium
- Na⁺ / K⁺ pump moves sodium out, potassium in

GENERATING ACTION POTENTIALS

Voltage gated ion channels

- sodium channels open --- sodium rushes in
- sodium channels close --- stops inward flow of sodium
- potassium channels open --- potassium rushes out

Net effect - Depolarization then Repolarization

electrical flow created by ionic flow, not electron flow

NA⁺/K⁺ PUMP

Membrane bound proteins

Utilizes ATP

Maintains resting membrane potential

Establishes sodium & potassium concentration gradients

NEUROMUSCULAR JUNCTION

Motor neuron cell body and dendrites in gray matter of spinal cord

Axons extend to muscle

Axon's terminal end contains a synaptic knob

Synaptic knob has synaptic vesicles containing acetylcholine

NEUROMUSCULA R JUNCTION

Axon leaves spinal cord. Extends to skeletal muscle. Terminal branche end in synapti knob.

MOTOR END PLATE

Area beneath the terminal branches of the axons Contains acetylcholine receptor complexes Acetylcholine binding opens the receptor complex Cholinesterase degrades acetylcholine into acetate and choline

Conserging & 2011 Workers Internet Preaders 1 Lappin coll: Williams & Williams

TENSION GENERATING CHARACTERISTICS

All or None Law

- when a neuron reaches threshold it generates an action potential which is conducted the length of the axon without any voltage change
- when the nerve fires, all the muscle fibers it innervates contract

SUMMATION OF LOCAL GRADED POTENTIALS

Temporal Summation

 additive effect of successive stimuli from an axon

Spatial Summation

 additive effect of stimuli from various axons

GRADATION OF FORCE

Force of muscle varies from slight to maximal:

- Increase number of motor units recruited
- Increase frequency of motor unit discharge.

PROPRIOCEPTORS

Muscle Spindles Golgi Tendon Organs Pacinian Corpuscles

Ruffini Endings

MUSCLE SPINDLES

Encapsulated fibers within the muscle belly Monitor changes in muscle length Monitor the rate of change in muscle length **Respond by causing** muscle contraction

Copyright @ 2006 Lippincott Williams & Wilkins.

GOLGI TENDON ORGANS

Encapsulated receptors Located at the musculotendinous junction

Monitor tension within the tendon

Respond by causing the muscle to relax

PACINIAN CORPUSCLES & RUFFINI ENDINGS

Encapsulated receptors

Located near joints, in muscle, tendon, and bone