ALMUSTAQBAL UNIVERSITY COLLEGE

Medical Laboratories Techniques Department
Stage : First year students
Subject : General chemistry 1 -Lecture 2A
Lecturer: Assistant professor Dr. SADIQ . J. BAQIR

Normality (N)

Represents the Number of milli equivalents of solute contained in one milliter of solution or Number of equivalents contained in one liter.
e.g: 0.2 N HCl contains 0.2 milli equivalent (meq) of HCl in each mL of solution or (0.2) equivalents (eq) in liter solution .
$\operatorname{Normality}(\mathrm{N})=\frac{\text { Number of equivalents }(\text { solute })}{V L(\text { solution })}$
Number of equivalents (eq) $=\frac{w t(g m)}{e q \cdot w t(g m)}$
$\operatorname{Normality}(\mathrm{N})=\frac{\frac{w t}{e q \cdot w t}}{\frac{V(m L)}{1000}}$

Normality (N) $=\frac{w t \times 1000}{e q . w t \times V(m L)}$
Eq. $=\frac{M w t}{\eta}$
$\operatorname{Normality}(\mathrm{N})=\frac{w t \times 1000}{\frac{M w t}{\eta} \times V(m L)}$
$\operatorname{Normality}(\mathrm{N})=\frac{\boldsymbol{w t} \boldsymbol{x} \mathbf{1 0 0 0}}{\frac{(\boldsymbol{w t} \boldsymbol{t} V(\boldsymbol{m L})}{\eta}}$
$\operatorname{Normality}(\mathrm{N})=\left(\frac{w t \times 1000}{M w t x V(m L)}\right) \boldsymbol{\eta}$

| $N=M$ | or $M=N / \eta$ |
| :---: | :---: | :---: |

> e.g: Normality(N) of $1 \mathrm{M} \mathrm{KCl}=1 \times 1=1 \mathrm{~N} \mathrm{KCl}$,
> \quad Normality(N) of $1 \mathrm{M} \mathrm{HCl}=1 \times 1=1 \mathrm{~N} \mathrm{HCl}$,
> Normality(N) of $1 \mathrm{M}_{\mathbf{~}} \mathrm{SO}_{4}=2 \times 1=2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$,
> Normality(N) of $1 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}=2 \times 1=2 \mathrm{~N} \mathrm{Na}_{2} \mathrm{CO}_{3}$

I) Equivalent mass in neutralization reaction:

A.Equivalent mass of acids (Eq):-

Is the mass that either contribute or reacts with one mole of hydrogen ion in the reaction.
1.mono protic acid e.g: $\left(\mathrm{HCl}, \mathrm{HNO}_{3}, \mathrm{CH}_{3} \mathrm{COOH}\right) \quad \eta=1$
$\mathrm{Eq}=\frac{M w t}{1}$
$\mathrm{Eq}=\frac{36.5}{1}=36.5$ for HCl
$E q=\frac{63}{1}=63$ for HNO_{3}
2.Diprotic acid e.g: $\left(\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{SO}_{3}\right) \eta=2$
$\mathrm{Eq}=\frac{M w t}{2}=\frac{98}{2}=49 \quad$ for $\mathrm{H}_{2} \mathrm{SO}_{4}$
$\mathrm{Eq}=\frac{34}{2}=17$ for $\mathrm{H}_{2} \mathrm{~S}$
$\mathrm{Eq}=\frac{82}{2}=41$ for $\mathrm{H}_{2} \mathrm{SO}_{3}$

B) Equivalent mass of Bases:

Is the mass that either contribute or reacts with one mole of OH in the reaction.
$\mathrm{Eq}=\frac{M w t}{\text { Number of } \mathrm{OH}}$

1. Mono hydroxy base e.g: $(\eta=1)$
e.g: NaOH
Eq. $=\frac{M w t}{1}=\frac{40}{1}=40$
Eq. $=\frac{M w t}{1}=\frac{56}{1}=56$
2. Di hydroxy base $(\eta=2)$
e.g: $\mathrm{Ca}(\mathrm{OH})_{2}$

$$
\mathrm{Zn}(\mathrm{OH})_{2}
$$

Eq. $=\frac{M w t}{2}=\frac{74}{2}=37 \quad$ Eq. $=\frac{M w t}{2}=\frac{99.4}{2}=49.7 \quad$ Eq. $=\frac{M w t}{2}=\frac{171.35}{2}=85.67$
II) Equivalent mass in (oxidation - reduction) reaction (Redox):

The equivalent mass of a participant in an (oxidation-reduction) reaction is that mass which directly produce or consume one mole of electrons.
$\mathbf{E q}=\frac{M w t}{\eta}$
$\eta=$ change in oxidation state number
$\eta=$ numbers of electrons participate in oxidation - reduction processes (Redox)

Example :

$2 \mathrm{KMnO}_{4}+10 \mathrm{FeSO}_{4}+8 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 5 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+2 \mathrm{MnSO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4}+8 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{MnO}_{4}{ }^{-}+10 \mathrm{Fe}^{2+}+\mathbf{8} \mathrm{H}^{+} \rightleftharpoons 10 \mathrm{Fe}^{3+}+\mathrm{MnSO}_{4} \quad$ (acidic medium)

$$
\mathbf{M n}^{7+} \quad \rightarrow \quad \mathbf{M n}^{2+}(5 \text { e gain }- \text { reduction })
$$

$\mathrm{Fe}^{2+} \quad \rightarrow \quad \mathrm{Fe}^{3+}(1$ e loss - oxidation $)$

Eq. of $\mathrm{KMnO}_{4}=\frac{M w t}{5}=\frac{157.9}{5}=31.6$

3. Equivalent mass in salts:

$\mathrm{Eq}=\frac{M w t}{\eta}$
$(\eta)=\sum$ (No. of cations x its valency $)$
e.g: $\mathrm{BaSO}_{4}(\mathbf{2 3 3} \mathbf{g} / \mathrm{mol})$

$$
\mathrm{BaSO}_{4} \rightarrow \mathrm{Ba}^{2+}+\mathrm{SO}_{4}{ }^{2-}
$$

$\eta=\mathrm{Ba}^{2+}(1) \times(2+)=2$

$$
\text { Eq. }=\frac{M w t}{2}=\frac{233}{2}=116.5
$$

Example
Find the Normality of the solution containing $5.3 \mathrm{~g} / \mathrm{L}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}(106 \mathrm{~g} / \mathrm{mol})$.
Solution:
$\mathrm{Na}_{2} \mathrm{CO}_{3} \quad \rightarrow \quad 2 \mathrm{Na}^{+}+\mathrm{CO}_{3}{ }^{2-}$
$(\eta)=\sum($ No. of cations x its valency $)$
$(\eta)=2 \times 1=2$
Eq. of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{M w t}{2}=\frac{\mathbf{1 0 6}}{2}=\mathbf{5 3} \mathbf{g}$
$\mathrm{N}=\frac{w t}{E q \cdot x V L}$
Normality $=\frac{5.3 \mathrm{gm}}{53 \times 1 \mathrm{~L}}=0.1$

Second method:

$\operatorname{Normality}(\mathrm{N})=\left(\frac{w t \times 1000}{M w t x V(m L)}\right) \boldsymbol{\eta}$
Normality $(N)=\left(\frac{5.3 \times 1000}{106 \times 1000(m L)}\right) 2=0.1 \mathrm{~N}$
e.g: $\operatorname{KAl}\left(\mathrm{SO}_{4}\right)_{2} \quad(258 \mathrm{~g} / \mathrm{mol})$
$(\eta)=\sum($ No. of cations x its valency $)$
$\eta=\left[K^{+}(1) \times(1+)\right]+\left[\mathrm{Al}^{3+}(1) \times(3+)\right]=4$
Eq. $=\frac{M . w t}{4}=\frac{258}{4}=64.5$
e.g :
$\mathrm{AgNO}_{3}(170 \mathrm{~g} / \mathrm{mol}), \quad \mathbf{N a}_{2} \mathrm{CO}_{3}(106 \mathrm{~g} / \mathrm{mol}), \quad \mathbf{L a}\left(\mathbf{I O}_{3}\right)_{3}(663.6 \mathrm{~g} / \mathrm{mol})$
$\mathrm{AgNO}_{3}\left(\eta=\mathrm{Ag}^{+}(1) \times 1=1\right)$
Eq. $=\frac{M w t}{1}=\frac{170}{1}=170$
$\mathrm{Na}_{2} \mathrm{CO}_{3} \quad\left(\boldsymbol{\eta}=\mathrm{Na}^{+}(\mathbf{2}) \times \mathbf{1}=\mathbf{2}\right)$
Eq. $=\frac{M w t}{2}=\frac{106}{2}=53$
$\mathbf{L a}\left(\mathbf{I O}_{3}\right)_{3} \quad\left(\boldsymbol{\eta}=\mathbf{L a}^{\mathbf{3 +}}(\mathbf{1}) \times \mathbf{3}=\mathbf{3}\right)$
Eq. $=\frac{M w t}{3}=\frac{663.6}{3}=221.1$

Molarity of liquids:

The molarity of liquids Can be determined by applying the following formula:

Molarity of liquid $(\mathbf{M})=\frac{\operatorname{sp.gr} x\left(\frac{w}{w}\right) \% \times 1000}{M w t}$
Specific gravity (Sp.gr) $=\frac{\text { density of substance }}{\text { density of water }}$
Specific gravity (Sp.gr) $=\frac{d_{\text {substance }}}{d_{H_{2} \mathrm{O}}}$
(sp.gr $\left.\approx \mathbf{d}_{\text {substance }}\right) \quad$ as $\mathbf{d}_{\mathbf{H}_{2} \mathbf{O}=1}$

Example:
Calculate the molarity of the solution of $70.5 \% \mathrm{HNO}_{3}(\mathrm{w} / \mathrm{w})(63.0 \mathrm{~g} / \mathrm{mol})$ that has specific gravity of (1.42) .

Solution:
$\operatorname{Molarity}(\mathbf{M})=\frac{\operatorname{sp.gr} x\left(\frac{w}{w}\right) \% x 1000}{M w t}$
$M=\frac{1.42 \times\left(\frac{70.5}{100}\right) \times 1000}{63.0}=\frac{1.42 \times 70.5 \times 10}{63.0}=15.9 \mathrm{M}$

Dilution:

Molarity (M) $=\frac{\text { No.of moles }(\text { solute })}{\text { Volume of solution }(L)}$
No. of moles solute $=\operatorname{Molarity}(\mathbf{M}) \times \mathbf{V}(\mathbf{L})$ (by rearrangement)
The amount of solute does not change during dilution. The number of moles of solute before and after dilution is unchanged, because dilution involves only the addition of extra solvent:

No. of moles (concentrated solution) = No. of moles (diluted solution)
$\mathbf{M}_{\text {conc. }} \mathbf{V}_{\text {conc. }}=\mathbf{M}_{\text {dil. }} \mathbf{V}_{\text {dil }}$.
The dilution equation is valid with any concentration units, such as (w/v)\% as well as molarity, which are used in Examples However, the same units for both initial and final concentration values must be used.

$$
\begin{aligned}
& \mathbf{N}_{\text {conc. }} \mathrm{x} \mathbf{V}_{\text {conc. }}=\mathbf{N}_{\text {dil. }} \mathbf{V}_{\text {dil. }} \\
& (\mathbf{w} / \mathbf{w}) \%_{\text {conc. }} \mathrm{x} \mathbf{V}_{\text {conc. }}=(\mathbf{w} / \mathbf{w}) \%_{\text {dil. }} \times \mathrm{V}_{\text {dil }} \\
& (\mathrm{v} / \mathrm{v}) \% \text { conc. } \mathrm{x} \mathbf{V}_{\text {conc. }}=(\mathrm{v} / \mathrm{v}) \%_{\text {dil. }} \times \mathbf{V}_{\text {dil }} \\
& (\mathbf{w} / \mathbf{v}) \%_{\text {conc. }} \mathbf{x} \mathbf{V}_{\text {conc. }}=(\mathbf{w} / \mathbf{v}) \%_{\text {dil. }} \times \mathbf{V}_{\text {dil }}
\end{aligned}
$$

Example:

Describe the preparation of $(100 \mathrm{~mL})$ of $(6.0 \mathrm{M}) \mathbf{H C l}$ from its concentrated solution that is $37.1 \%(\mathbf{w} / \mathrm{w}) \mathrm{HCl}(36.5 \mathrm{~g} / \mathrm{mole})$ and has specific gravity (sp.gr) of (1.181) .

Solution:

ا . نحسب تركيز الحامض الاصلي (المركز) من القانون التالي:

$$
\begin{aligned}
M_{\mathrm{HCl}} & =\frac{\operatorname{sp.gr} x\left(\frac{w}{w}\right) \% x 1000}{M w t} \\
M_{\mathrm{HCl}} & =\frac{1.18 \times \frac{37.1}{100} \times 1000}{36.5}=\frac{1.18 \times 37.1 \times 10}{36.5}=12.0 \mathrm{M}
\end{aligned}
$$

The Molarity of the concentrated acid is $\mathbf{1 2 . 0 M}$ الان نذهب الى قانون التخفيف لحساب الحجم المطلوب اخذّه من الحامض المركز وتخفيفه الى الحجم المطلوب (• • ا مللتر في هنا المثّل) وكمايلي:
$\mathbf{M}_{\text {conc. }} \mathbf{V}_{\text {conc. }}=\mathbf{M}_{\text {dil. }} \mathbf{V}_{\text {dil }}$.
$12.0 \times V_{\text {conc }}=6.0 \times 100$
$V_{\text {conc }}=\frac{6.0 \times 100}{12}=50 \mathrm{~mL}$.
Then 50 mL of concentrated acid is to be diluted to 100 mL to give 6 M solution

Exercise:

Describe the preparation of 500 mL of $3.00 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(98 \mathrm{~g} / \mathrm{mol})$ from the commercial reagent that is $\mathbf{9 3 \%} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathbf{w} / \mathrm{w})$ and has a specific gravity of 1.830 .

Calculation of Normality of liquids

Normality of liquid $(\mathbf{N})=\frac{\operatorname{sp.gr} x\left(\frac{w}{w}\right) \% \times 1000}{e q \cdot w t}$

Example:

Describe the preparation of 500 mL of $3.00 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}(98 \mathrm{~g} / \mathrm{mol})$ from the commercial reagent that is $96 \% \mathrm{H}_{2} \mathrm{SO}_{4}(w / w)$ and has a specific gravity of 1.840.

Solution:
$\mathbf{M}_{\mathrm{H} 2 \mathrm{SO}} \mathbf{4}=\frac{\text { sp.gr } x \% \times 1000}{\text { eq.wt }}$
eq. $\mathrm{wt}=\frac{M w t}{\eta}$
For $\mathrm{H}_{2} \mathrm{SO}_{4} \quad \mathbf{\eta}=\mathbf{2}$ then
eq.wt $=\frac{98}{2}=49$
Normality $\left(\mathbf{N}_{\text {H2SO4 }}\right)=\frac{1.840 \times \frac{96}{100} \times 1000}{49}$
Normality $\left(\mathrm{N}_{\mathrm{H} 2 \mathrm{SO} 4}\right)=\frac{1.840 \times 96 \times 10}{49}=36.04 \mathrm{~N}$
The Normality of the concentrated acid is $\mathbf{3 6 . 0 4} \mathbf{N}$

> لحساب الحجم المطلوب اخذه من الحامض المركز وتخفيفه الى الحجم المطلوب (• • O مللتر في هذا المثال) نطبق قانون التخفيف التّالي:
$\mathbf{N}_{\text {conc. }} \mathbf{V}_{\text {conc. }}=\mathbf{N}_{\text {dil. }} \mathbf{V}_{\text {dil }}$
$36.04 \times V_{\text {conc }}=3.0 \times 500$
$V_{\text {conc }}=\frac{3.0 \times 500}{36.04}=41.62 \mathrm{~mL}$.

Then 41.62 mL of concentrated acid is to be diluted to 500 mL to give $\mathbf{3} \mathrm{N}$ solution.

Example:

A 12.5\% (w/w) aqueous solution of $\mathrm{NiCl}_{2}(129.61 \mathrm{~g} / \mathrm{mol})$ has specific gravity of 1.149 . Calculate:
(a) the Molarity of $\mathbf{N i C l}_{2}$ in this solution.
(b) the molar concentration of Cl^{-}in the solution.
(c) the mass in grams of $\mathbf{N i C l}_{2}$ contained in $500 \mathbf{~ m L}$ of this solution.
solution:
(a) the Molarity of NiCl_{2} in this solution

$$
\begin{aligned}
& M_{\text {NiCl2 }}=\frac{\operatorname{sp.gr} \times \% \times 1000}{M w t} \\
& M_{\text {NiCl2 }}=\frac{1.149 \times \frac{6.42}{100} \times 1000}{129.61}=0.569 \mathrm{M}
\end{aligned}
$$

(b) the molarity of Cl concentration in the solution.

Each 1 mole gives 1 mole 2 mole

Molarity of $\mathbf{C l}^{-}=2 \times$ Molarity of $\mathbf{N i C l}_{\mathbf{2}}$
Molarity of $\mathrm{Cl}^{-}=2 \times 0.569=1.138 \mathrm{M}$
(a) the mass in grams of NiCl_{2} contained in 500 mL of this solution.

Weight (g) = Molarity \mathbf{x} volume(liter) x M.wt

Weight $=0.569 \times\left(\frac{500}{1000}\right) \mathrm{L} \times 129.61=36.87 \mathrm{~g}$

Second method:
$\operatorname{Molarity}(M)=\frac{\mathrm{wt}_{\mathrm{g})} \times 1000}{\mathrm{M} . \mathrm{wt} \times \mathrm{V}_{\mathrm{mL}}}$
$\mathbf{w t}(\mathbf{g})=\frac{\operatorname{Molarity}(\mathrm{M}) \mathrm{xM.wt} \mathrm{x} \mathrm{V}_{\mathrm{mL}}}{\mathbf{1 0 0 0}}$
$\mathrm{wt}(\mathrm{g})=\frac{0.569 \times 129.6 \times 50 \mathrm{~m}_{\mathrm{mL}}}{1000}=36.87 \mathrm{~g}$

Exercise:

A solution of $6.42(\mathrm{w} / \mathrm{w}) \%$ of $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}(241.86 \mathrm{~g} / \mathrm{mol})$ has a specific gravity of 1.059 . Calculate:
A) The Molarity and Normality of the solution
B) The mass in grams of $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$ contained in each liter of this solution

