ALMUSTAQBAL UNIVERSITY COLLEGE

Medical Laboratories Techniques Department
Stage : First year students
Subject : General chemistry 1 - Lecture 2A
Lecturer: Assistant professor Dr. SADIQ . J. BAQIR

Normality (N)

Represents the Number of milli equivalents of solute contained in one milliter of solution or Number of equivalents contained in one liter.

e.g: 0.2 N HCl contains 0.2 milli equivalent (meq) of HCl in each mL of solution or (0.2) equivalents (eq) in liter solution .

Normality (N) = $\frac{Number of equivalents(solute)}{VL(solution)}$

Number of equivalents (eq) = $\frac{wt (gm)}{eq.wt(gm)}$

Normality (N) =
$$\frac{\frac{wt}{eq.wt}}{\frac{V(mL)}{1000}}$$

Normality (N) = $\frac{wt \ x \ 1000}{eq.wt \ x \ V(mL)}$

Eq. = $\frac{Mwt}{\eta}$

Normality (N) = $\frac{wt \ x \ 1000}{\frac{Mwt}{\eta} \ x \ V(mL)}$

Normality (N) = $\frac{wt \ x \ 1000}{\frac{Mwt \ xV(mL)}{n}}$

Normality (N) = $\left(\frac{wt \, x 1000}{Mwt \, x \, V(mL)}\right) \eta$

Ν = Μ η	,	or	M = N / η

e.g: Normality(N) of 1M KCl = 1x1 = 1 N KCl ,

Normality(N) of 1M HCl = 1x1 = 1N HCl,

Normality(N) of $1 \text{ M H}_2\text{SO}_4 = 2x1 = 2 \text{ N H}_2\text{SO}_4$,

Normality(N) of 1 M Na₂ CO $_3 = 2x1 = 2N$ Na₂CO $_3$

I) <u>Equivalent mass in neutralization reaction:</u>

A.Equivalent mass of acids (Eq):-

Is the mass that either contribute or reacts with one mole of hydrogen ion in the reaction.

1.mono protic acid e.g: (HCl, HNO₃, CH₃COOH) η =1

Eq =
$$\frac{Mwt}{1}$$

Eq = $\frac{36.5}{1}$ = 36.5 for HCl
Eq = $\frac{63}{1}$ = 63 for HNO₃
2.Diprotic acid e.g: (H₂SO₄, H₂S, H₂SO₃) η= 2
Eq = $\frac{Mwt}{2}$ = $\frac{98}{2}$ = 49 for H₂SO₄
Eq = $\frac{34}{2}$ = 17 for H₂S

Eq = $\frac{82}{2}$ = 41 for H₂SO₃ B) Equivalent mass of Bases:

Is the mass that either contribute or reacts with one mole of OH in the reaction.

 $Eq = \frac{Mwt}{Number of OH}$

1. Mono hydroxy base e.g: $(\eta=1)$

e.g: NaOH for KOH

- Eq. $=\frac{Mwt}{1} = \frac{40}{1} = 40$ Eq. $=\frac{Mwt}{1} = \frac{56}{1} = 56$
- **2.** Di hydroxy base (η =2)
- e.g: Ca(OH)₂ Zn(OH)₂ Ba(OH)₂ Eq. = $\frac{Mwt}{2} = \frac{74}{2} = 37$ Eq. = $\frac{Mwt}{2} = \frac{99.4}{2} = 49.7$ Eq. = $\frac{Mwt}{2} = \frac{171.35}{2} = 85.67$

II) Equivalent mass in (oxidation – reduction) reaction (Redox):

The equivalent mass of a participant in an (oxidation-reduction) reaction is that mass which directly produce or consume one mole of electrons.

$$\mathbf{Eq} = \frac{Mwt}{\eta} \qquad \qquad \mathbf{\eta} = \mathbf{change in oxidation state number}$$

 η = numbers of electrons participate in oxidation - reduction processes (Redox)

Example :

 $2KMnO_4 + 10FeSO_4 + 8H_2SO_4 \rightarrow 5Fe_2 (SO_4)_3 + 2MnSO_4 + K_2SO_4 + 8H_2O$

 $MnO_4^- + 10 Fe^{2*} + 8 H^+ \rightleftharpoons 10 Fe^{3*} + MnSO_4$ (acidic medium)

 $Mn^{7+} \rightarrow Mn^{2+}$ (5 e gain – reduction)

 $Fe^{2+} \rightarrow Fe^{3+}$ (1 e loss – oxidation)

Eq. of $\text{KMnO}_4 = \frac{Mwt}{5} = \frac{157.9}{5} = 31.6$

3. Equivalent mass in salts:

Eq = $\frac{Mwt}{\eta}$ (η) = \sum (No. of cations x its valency) e.g: BaSO₄ (233 g/mol) BaSO₄ \rightarrow Ba²⁺ + SO₄²⁻ η = Ba²⁺ (1) x (2+) =2 Eq. = $\frac{Mwt}{2} = \frac{233}{2} = 116.5$

Example

Find the Normality of the solution containing 5.3 g/L of Na₂CO₃ (106 g/mol).

Solution:

Na₂CO₃ \rightarrow 2Na⁺ + CO₃²⁻ (η) = Σ (No. of cations x its valency) (η) = 2 x 1 = 2 Eq. of Na₂CO₃ = $\frac{Mwt}{2} = \frac{106}{2} = 53$ g N = $\frac{wt}{Eq. x VL}$ Normality = $\frac{5.3gm}{53 x 1L} = 0.1$ Second method:

Normality (N) = $\left(\frac{wt \ x \ 1000}{Mwt \ x \ V(mL)}\right) \eta$

Normality (N) =
$$\left(\frac{5.3 \times 1000}{106 \times 1000(mL)}\right) 2 = 0.1 \text{ N}$$

e.g : KAI(SO₄)₂ (258 g/ mol) (η) = \sum (No. of cations x its valency) η = [K⁺(1) x (1+)] +[Al³⁺(1) x (3+)]= 4 Eq. = $\frac{M.wt}{4} = \frac{258}{4} = 64.5$

e.g:

AgNO₃ (170 g/mol) , Na₂CO₃ (106 g/mol) , La(IO₃)₃ (663.6g/mol)

AgNO₃ (
$$\eta = Ag^{+}(1) \times 1 = 1$$
)

Eq.
$$=\frac{Mwt}{1}=\frac{170}{1}=170$$

Na₂CO₃ (
$$\eta$$
= Na⁺ (2) x 1= 2)

Eq.
$$=\frac{Mwt}{2}=\frac{106}{2}=53$$

La(IO₃)₃ (
$$\eta$$
 = La³⁺ (1) x 3 = 3)
Eq. = $\frac{Mwt}{3} = \frac{663.6}{3} = 221.1$

Molarity of liquids:

The molarity of liquids Can be determined by applying the following formula:

Molarity of liquid(M) = $\frac{sp.gr x \left(\frac{w}{w}\right)\% x1000}{Mwt}$ Specific gravity (Sp.gr) = $\frac{density of substance}{density of water}$ Specific gravity (Sp.gr) = $\frac{d_{substance}}{d_{H_20}}$ (sp.gr $\approx d_{substance}$) as $d_{H_20} = 1$

Example:

Calculate the molarity of the solution of 70.5 % HNO_3 (w/w) (63.0 g/mol) that has specific gravity of (1.42).

Solution:

Molarity(M) =
$$\frac{sp.gr x \left(\frac{w}{w}\right)\% x 1000}{Mwt}$$

$$\mathbf{M} = \frac{1.42 \ x \ \left(\frac{70.5}{100}\right) x \ 1000}{63.0} = \frac{1.42 \ x \ 70.5 x \ 10}{63.0} = \mathbf{15.9} \ \mathbf{M}$$

Dilution:

Molarity (M) = $\frac{No.of moles (solute)}{Volume of solution(L)}$

No. of moles solute = Molarity(M) x V(L) (by rearrangement)

The amount of solute does not change during dilution . The number of moles of solute before and after dilution is unchanged, because dilution involves only the addition of extra solvent:

No. of moles (concentrated solution) = No. of moles (diluted solution)

$$\mathbf{M}_{\text{conc.}} \mathbf{V}_{\text{conc.}} = \mathbf{M}_{\text{dil.}} \mathbf{V}_{\text{dil.}}$$

The dilution equation is valid with any concentration units, such as (w/v)% as well as molarity, which are used in Examples However, the same units for both initial and final concentration values must be used.

Nconc. x Vconc. = Ndil. x Vdil. $(w/w)\%_{conc. x}$ Vconc. = $(w/w)\%_{dil. x}$ Vdil. $(v/v)\%_{conc. x}$ Vconc. = $(v/v)\%_{dil. x}$ Vdil. $(w/v)\%_{conc. x}$ Vconc. = $(w/v)\%_{dil. x}$ Vdil.

Example:

Describe the preparation of (100 mL) of (6.0 M) HCl from its concentrated solution that is 37.1 % (w/w) HCl (36.5 g /mole) and has specific gravity (sp.gr) of (1.181).

Solution:

$$\mathbf{M}_{\mathrm{HCl}} = \frac{sp.gr \ x \ \left(\frac{w}{w}\right)\% \ x \ \mathbf{1000}}{Mwt}$$

$$\mathbf{M}_{\rm HCl} = \frac{1.18 \, x \frac{37.1}{100} \, x \, 1000}{36.5} = \frac{1.18 \, x \, 37.1 \, x \, 10}{36.5} = \mathbf{12.0} \, \mathbf{M}$$

The Molarity of the concentrated acid is 12.0M

الان نذهب الى قانون التخفيف لحساب الحجم المطلوب اخذه من الحامض المركز وتخفيفه الى الحجم المطلوب (١٠٠ مللتر في هذا المثال) وكمايلي:

- $\mathbf{M}_{\text{conc.}} \mathbf{V}_{\text{conc.}} = \mathbf{M}_{\text{dil.}} \mathbf{V}_{\text{dil.}}$
- $12.0 \ge V_{conc} = 6.0 \ge 100$

$$V_{conc} = \frac{6.0 \ x \ 100}{12} = 50 \ mL.$$

Then 50 mL of concentrated acid is to be diluted to 100 mL to give 6 M solution

Exercise:

Describe the preparation of 500 mL of $3.00 \text{ M H}_2\text{SO}_4$ (98 g/mol) from the commercial reagent that is $93\% \text{ H}_2\text{SO}_4$ (w/w) and has a specific gravity of 1.830.

Calculation of Normality of liquids

Normality of liquid (N) = $\frac{sp.gr x \left(\frac{w}{w}\right)\% x 1000}{eq.wt}$

Example:

Describe the preparation of 500 mL of $3.00 \text{ N H}_2\text{SO}_4(98 \text{ g /mol})$ from the commercial reagent that is 96% H₂SO₄ (w/w) and has a specific gravity of 1.840.

Solution:

 $\mathbf{M}_{\text{H2SO4}} = \frac{sp.gr\,x\,\%\,x\,1000}{eq.wt}$

eq.wt = $\frac{Mwt}{\eta}$

For $H_2SO_4 \eta = 2$ then

eq.wt = $\frac{98}{2} = 49$

Normality (N _{H2SO4}) = $\frac{1.840 x \frac{96}{100} x 1000}{49}$

Normality (N _{H2SO4}) = $\frac{1.840 \times 96 \times 10}{49}$ = 36.04 N

The Normality of the concentrated acid is 36.04 N

لحساب الحجم المطلوب اخذه من الحامض المركز وتخفيفه الى الحجم المطلوب (٠٠٠ مللتر في هذا المثال) نطبق قانون التخفيف التالي:

 $N_{conc.} V_{conc.} = N_{dil.} V_{dil.}$

 $36.04 \text{ x V}_{conc} = 3.0 \text{ x } 500$

 $V_{\rm conc} = \frac{3.0 \ x \ 500}{36.04} = 41.62 \ {\rm mL}.$

Then 41.62 mL of concentrated acid is to be diluted to 500 mL to give 3 N solution.

Example:

A 12.5% (w/w) aqueous solution of NiCl₂ (129.61 g/mol) has specific gravity of 1.149. Calculate:

- (a) the Molarity of NiCl₂ in this solution.
- (b) the molar concentration of Cl⁻ in the solution.
- (c) the mass in grams of NiCl₂ contained in 500 mL of this solution.

solution:

(a) the Molarity of NiCl₂ in this solution

$$M_{\text{NiCl2}} = \frac{sp.gr \, x \, \% \, x \, 1000}{Mwt}$$
$$M_{\text{NiCl2}} = \frac{1.149 \, x \frac{6.42}{100} \, x \, 1000}{129.61} = 0.569 \text{ M}$$

(b) the molarity of Cl concentration in the solution.

NiCl₂ \longrightarrow Ni²⁺ + 2Cl⁻

Each 1 mole gives 1 mole 2 mole

Molarity of Cl⁻ = 2 x Molarity of NiCl₂

Molarity of $Cl^{-} = 2 \times 0.569 = 1.138 M$

(a) the mass in grams of NiCl₂ contained in 500 mL of this solution.

Weight (g) = Molarity x volume(liter) x M.wt

Weight = 0.569 x (
$$\frac{500}{1000}$$
) L x 129.61 = 36.87 g

Second method:

 $Molarity(M) = \frac{wt_{(g)} x 1000}{M.wt x V_{mL}}$

 $wt(g) = \frac{Molarity(M) \, x \, M.wt \, x \, V_{mL}}{1000}$

$$wt(g) = \frac{0.569 \times 129.6 \times 500_{mL}}{1000} = 36.87 \text{ g}$$

Exercise:

A solution of 6.42 (w/w)% of Fe(NO₃)₃ (241.86 g/mol) has a specific gravity of 1.059. Calculate:

A) The Molarity and Normality of the solution

B) The mass in grams of Fe(NO₃)₃ contained in each liter of this solution