Information Theory and Coding Forth Stage

Model of information transmission system

Transmitting a message from a transmitter to a receiver can be sketched as in Figure 1:
The components of information system as described by Shannon are:
1- An information source is a device which randomly delivers symbols from an alphabet. As an example, a PC (Personal Computer) connected to internet is an information source which produces binary digits from the binary alphabet $\{0$, $1\}$.
2- A source encoder allows one to represent the data source more compactly by eliminating redundancy: it aims to reduce the data rate.
3- A channel encoder adds redundancy to protect the transmitted signal against transmission errors.

Figure 1: Shannon paradigm

4- A channel is a system which links a transmitter to a receiver. It includes signaling equipment and pair of copper wires or coaxial cable or optical fiber, among other possibilities.
5- The rest of blocks is the receiver end; each block has inverse processing to the corresponding transmitted end.

Self- information:

In information theory, self-information is a measure of the information content associated with the outcome of a random variable. It is expressed in a unit of information, for example bits, nats, or hartleys, depending on the base of the logarithm used in its calculation.

A bit is the basic unit of information in computing and digital communications. A bit can have only one of two values, and may therefore be physically implemented with a two-state device. These values are most commonly represented as 0 and 1 .

A nat is the natural unit of information, sometimes also nit or nepit, is a unit of information or entropy, based on natural logarithms and powers of e, rather than the powers of 2 and base 2 logarithms which define the bit. This unit is also known by its unit symbol, the nat.

The hartley (symbol Hart) is a unit of information defined by International Standard IEC 80000-13 of the International Electrotechnical Commission. One hartley is the information content of an event if the probability of that event occurring is $1 / 10$. It is therefore equal to the information contained in one decimal digit (or dit).

1 Hart $\approx 3.322 \mathrm{Sh} \approx 2.303$ nat.
The amount of self-information contained in a probabilistic event depends only on the probability of that event: the smaller its probability, the larger the self-information associated with receiving the information that the event indeed occurred as shown in Figure 2.
i- Information is zeroif $p\left(x_{i}\right)=1$ (certain event)
ii- Information increase as $p\left(x_{i}\right)$ decrease to zero
iii- Information is a + ve quantity
The log function satisfies all previous three points hence:

$$
I\left(x_{i}\right)=\log _{a} \frac{1}{p\left(x_{i}\right)}=-\log _{a} p\left(x_{i}\right)
$$

Where $I\left(x_{i}\right)$ is self-information of $\left(x_{i}\right)$ and if:
i- If "a" $=2$, then $I\left(x_{i}\right)$ has the unit of bits
ii- If "a" $=\mathrm{e}=2.71828$, then $I\left(x_{i}\right)$ has the unit of nats iii-
If "a" $=10$, then $I\left(x_{i}\right)$ has the unit of hartly

Note: $\log _{a} x=\frac{\ln x}{\ln a}$

Figure 2: Relation between probability and self-information

Example 1: A fair die is thrown, find the amount of information gained if you are told that 4 will appear.

Solution:

$$
P(1)=P(2)=\cdots \ldots \ldots=P(6)=\frac{1}{6}
$$

Then:

$$
I(4)=-\log _{2}\left(\frac{1}{6}\right)=-\frac{\ln \left(\frac{1}{6}\right)}{\ln 2}=2.5849 \text { bits }
$$

Or

$$
I(4)=-\log _{e}\left(\frac{1}{6}\right)=-\frac{\ln \left(\frac{1}{6}\right)}{\ln e}=1.791 \quad \text { nats }
$$

Or

$$
I(4)=-\log _{10}\left(\frac{1}{6}\right)=-\frac{\ln \left(\frac{1}{6}\right)}{\ln 10}=0.778 \quad \text { hart }
$$

Example 2: A biased coin has $\mathrm{P}(\mathrm{Head})=0.3$. Find the amount of information gained if you are told that a tail will appear.

Solution:

$$
\begin{gathered}
P(\text { tail })=1-P(\text { Head })=1-0.3=0.7 \\
I(\text { tail })=-\log _{2}(0.7)=-\frac{\ln (0.7)}{\ln 2}=0.5145 \text { bits }
\end{gathered}
$$

HW: A communication system source emits the following information with their corresponding probabilities as follows: $\mathrm{A}=1 / 2, \mathrm{~B}=1 / 4, \mathrm{C}=1 / 8$. Calculate the information conveyed by each source outputs. Draw the relation between probability and selfinformation.

