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1. Motion of Charged Particles in Electric and
Magnetic Fields

For a suitable choiee of axes, the differential equations for the nonisotropie
case ean be written

A .
il = —kay

miE = — k2

Here we have a case of three different frequencies of oscillation: w, = /%, /'m,
we = A kgl wy = Y ky/m, and the motion is given by the solutions

= A cos [l + )
¥ = B cos (aaf + 8)
z = L cos (e + v)

Again, the six constants of integration in the above equations are determined
from the initial conditions. The resulting oscillation of the particle lies
entirely within & rectangular box (whose sides are 24, 2B, and 2C) centered
on the origin. In the event that w, ws, and ws are commensurate, that is, if
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where i, ns, and n: are integers, the path, called a Lissajous fipure, will be
closed, because after a time 2wny/un = Zengfws = 2eng/ws the particle will
return to its initial position and the motion will be repeated. [In Egquation
- Uit ia assumed that any common integral factor is canceled out.] On
the other hand, if the «'s are nof commensurate, the path is not closed.
In this ecase the path may be said to fill completely the rectangular box
mentioned above, at least in the sense that if we wait long enough, the particle
will come arbitrarily elose to any given point.

The net restoring force exerted on a given atom in a solid ervstalline
substance is approximately linear in the displacement in many cases. The
resulting frequencies of oscillation usually lie in the infrared region of the
spectrum: 10°* to 10" vibrations per second.




2.Motion of Charged Particles in Electric and Magnetic Fields

When an electrically charged particle is in the vieinity of other electric
charges, it experiences o force.  This force F 1= said to be due to the electric
field E which arises from these other charges. We write

F = ¢E

where ¢ is the electric charge carried by the particle in question.? The
equation of motion of the particle is then
d’r

m i qE

or, in component form,
qF -
= gqE,
= gE,

The field components are, in general, functions of the position coordinates
x, v, and z. In the case of time-varying fields {that 1s, if the charges producing
E are moving) the components, of course, also involve (.

Let us consider a simple case, namely that of a uniform constant electric
field. We ean choose one of the axes, say the 2z axis, to be in the direcetion of
the field. Then FE, = FE, =0, and & = F, The differential equations of
motion of a particle of charge ¢ moving in this field are then

" E
=10 = = constant
mi

These are of exactly the same form as those for a projectile in a uniform
gravitational field. The path is therefore a parabola.
It iz shown in textbooks dealing with electromagnetic theory® that

VXE=10

if E is due to statie charges. This means that motion in such & field is con-
servative, and that there exists a potential function & such that E = —Vd,
The potential energy of a particle of charge ¢ in such a field is then g¢&, and
the total energy is constant and is equal to jme* 4 gP.

In the presence of a static magnetic field B (called the magnetic induction)
the forece acting on a moving particle is conveniently expressed by means of

the cross product, namely,




F = g(v X B)

where v is the velocity, and g is the charge* The differential equation of
motion of a particle moving in a purely magnetic field is then

i
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The above equation states that the acceleration of the particle is always at
right angles to the direction of motion. This means that the tangential
component of the acceleration () is zero, and so the particle moves with con-
stant speed. This is true even if B is a varying function of the position r as
long as it does not vary with time.




EXAMPLE

Let us examine the motion of a charged particle in a uniform constant
magnetic field. Suppose we choose the z axis to be in the direction of the
field; that is, we shall write

B = kB

The differential equation of motion now reads

dr i ] 'I
m-— =gvX kBl =qgB|2 §
di® 0 0

m(it + jy + k&) = ¢B(iy — j&

k
F
1
)

Equating eomponents, we have
mi = qBy
myj = —gB#
z=10

Here, for the first time, we meet a set of differential equations of motion
which are not of the separated type. The solution is relatively simple, how-
ever, for we can integrate at once with respect to { to obtain

mE = qBy + o,
my = —qBx + ¢
Z = ponstant = 3,

.1:'=my+ﬂ'1 y - ‘wr + Cy Z= 2




where we have used the abbreviation w = qB/m. The ¢’s are constants

of integration, and €, = &/m, Cs = ez/m. Upon inserting the expression for

g from the second part of Equation @ into the first part of Equation
'}, we obtain the following separated equation for z:

4+ o'r = o'a

where @ = Cy/w. The solution is clearly

z=a-+ A cos (wt+ 6) 1

where A and 6; are constants of integration. Now, if we differentiate with
respect to {, we have

*
= —Awsin (wl + ) _
The above expression for £ may be substituted for the left side of the first
of Equations . 1 and the resulting equation solved for y. The result is
y=b— Asin (wl + 6) 2

where b = —Cy/w. To find the form of the path of motion, we eliminate
t between Equation 1 and Equation 5 to get

(z=a)f+(y—0F=A° 3
Thus the projection of the path of motion on the zy plane is a eircle of radius

riaurE 1 Heliesl path of a charged particle moving in & magnetiec field.




A centered at the point (a,b). Since, from the third of Equations @
the speed in the z direction is constant, we conclude that the path is a spiral.
The axis of the spiral path is in the direction of the magnetic field, as shown
in Figure ; I'rom Equation . we have

¥ = —awcos (wl 4+ f) b
Upon eliminating ¢ between Equation { « and Fquation (3.40), we find

2
$'+yi=ﬂj¢e’=.:i’(q;§ *k

Letting v; = (? + 4!, we see that the radius A of the spiral is given by

" m
If there is no component of the velocity in the z direction, the path is ¢
of radius A. It is evident that 4 is directly proportional to the speed uy,
and that the angular frequency w of motion in the circular path is independeni
of the speed. wis known as the cylotron frequency. The cyclotron, invented
by Ernest Lawrence, depends for its operation on the fact that w isindependent

of the speed of the charged particle.
3.Constrained Motion of a Particle

When a moving particle is restricted geometrically in the sense that it
must stay on & certain definite surface or curve, the motion is said to be
consirained. A piece of ice sliding around in a bowl, or a bead sliding on a
wire, are examples of constrained motion. The constraint may be complete,
as with the bead, or it may be one sided, as in the former example. Con-
straints may be fixed, or they may be moving. In this chapter we shall study
only fixed constraints.

The Energy Equation for Smooth Consiraints

The total force acting on a particle moving under constraint can be
expressed as the vector sum of the external force F and the force of constraint
R. The latter foree is the reaction of the constraining agent upon the particle.
The equation of motion may therefore be written

dv

If we take the dot product with the velocity v we have




dvv=F-v+R*v

G

Now in the case of a smoeth constraint—for example, a frictionless surface—
the reaction R is normal to the surface or curve while the velocity v is tangent
to the surface. Hence R iz perpendicular to v and the dot product R-v
vanishes. Equation (3.44) then reduces to

%(é mv-v) = F v

Consequently, if F is conservative, we ean integrate as in Section 3.5, and we
find the same energy relation as Eqguation

Fm? + Vix,y,z) = constant = K

Thus the particle, although remaining on the surface or curve, moves in
such a way that the total energy is constant. We might, of course, have
expected this to be the case for frictionless constraints.

EXAMPLE

A particle is placed on top of a smooth sphere of radius a. If the particle
is slightly disturbed, at what point will it leave the sphere?

The forces acting on the particle are the downward foree of gravity and
the reaction R of the spherical surface. The equation of motion is

Let us choose coordinate axes as shown in Figure 3.8. The potential energy
iz then mgz, and the energy equation reads

Ime? 4+ mgz =

FIGURE 9 Forees acting on a particle sliding on & smooth sphere.




From the initial conditions (v = 0 for ¢ = a)} we have F = mga, so, as the
particle slides down, its speed is given by the equation
= 2g(a — z)

MNow, if we talke radial components of the equation of motion, we can write the
force equation as

—mgeoos 8 4+ R = —mgé—i— R

Hence

xz

¥
= g - — = g - — = Dglr — g
gﬂ [/ gﬂ L Q[ }

= Eﬂ? (B2 — 2a)

Thus R wvanizches when z = #a, at which point the particle will leave the
gphere. This may be argued from the fact that the sign of i changes from
positive to negative there.

Motion on o Curve

For the case in which a particle is constrained to move on a certain
curve, the energy equation together with the equations of the curve in para-
metric form

x = z(s) ¥ = yis)} z = z(s)

suffice to determine the motion. (The parameter s is the distance measured
along the curve from some arbitrary reference point.)] The motion may be
found by consideration of the fact that the potential energy can be expressed
as a function of & alone, while the kinetic energy is just imé®. Thus the
energy equation may be written

mit + V(s) = E

from which = (hence x, ¥, and z) can be obtained by integration. Alternately,
by differentiating the above equation with respect to £ and canceling the com-
mon factor & we obtain the following differential equation of motion for the
particle:

dv

This equation is equivalent to the equation
mi — F, =10

where F, is the component of the external force F in the direction of 5.  This
meanz that F, = —dlV /ds.




