Analytic Mechanics

Ninth lecture

Simple pendulum

M. Sc. Baraa Abd Alrda
M. Sc. Heider Hassan Al-kaaby

Second Stage
Department of medical physics
Al-Mustagbal University-College

2022- 2023




1.  The Simple Pendulum

The above considerations are well illustrated by the simple pendulum—a
heavy particle attached to the end of a light inextensible rod or cord, the
motion being in & vertical plane. The simple pendulum is also dynamically
equivalent to a bead sliding ~~ - smooth wire in the form of a vertical circular
loop. As shown in Figure 1 let 6 be the angle between the vertical and

FIGURE 1 The simple pendulum.




In order to find an approximate solution of the differential equation of
motion, let us assume that 0 remains small. In this case

sin 8 ~ @
s0 we have

i+70=0

This is the differential equation of the harmonic oscillator. The solution, as

f = 6 cos (wol + o)

where wg = 4/g/l. 6 is the amplitude of oscillation, and «» is a phase factor.
Thus, to the extent that # is a valid approximation for sin 8, the motion is
simple harmonic, and the period of oscillation T is given by

T&=2—1=21-JE'
@ g

the well-known elementary formula.

the line CP where C is the center of the circular path and P is the instantaneous
position of the particle. The distance s is measured from the equilibrium
position 0. From the figure, we see that the component F, of the force of
gravity mg in the direction of s is equal to —mg sin 8. If [ is the length of
the pendulum, then 6 = s/l. The differential equation of motion then reads

mé§ + mg sin (%) =0

or, in terms of 6, we may write
®+%ma=o

It should be noted that the potential energy V' can be expressed as mgz where
z 1s the vertical distance of the particle from 0, namely,

V = mgz = mgl(1 — cos 8)

= mgl — mgl cos (%)

Hence —dV/ds = —mg sin (s/l) = —mgsn § = F,.




More Accurate Solution of the Simple
Pendulum Problem and the Nonlinear Oscillator

The differential equation of motion of the simple pendulum
§+ Igﬂin 6 =0

is a special case of the general differential equation for motion under a non-
linear restoring foree, that is, a force which varies in some manner other than
in direct proportion to the displacement. The equation of the general one-
dimensional problem with no damping may be written

E+f& =0

where [ is the variable denoting the displacement from the equilibrium posi-
tion, so that
J(0) =0

Nonlinear differential equations usually require some method of approxima-
tion for their solution. Suppose that the function f(£) is expanded as a power
series in §, namely,

F(&) = a1t + aoF® + asd® + - - -

The differential equation of motion is then

%+m£+m€’+m€‘+---=0

This is the expanded form of the general equation of motion of the nonlinear
oscillator without damping. The term ¢ in the above equation is the linear
term. If this term is predominant, that is, if a; is much larger than the other
coefficients, then the motion will be approximately simple harmonic with
angular frequency ¢i'*. A more accurate solution must take into account
the remaining nonlinear terms.

To illustrate, let us return to the problem of the simple pendulum. If we
use the series expansion
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and retain only the first two terms, we obtain

9, 8 5 _
§+IE mﬁ_u

as & second approximation to the differential equation of motion. We know
that the motion is periodic. Suppose we try a solution in the form of a simple
sinusoidal function

= A cos wi
Inserting this into the differential equation, we obtain

— Aw® cos m£+§A Cos wh — E%.:ﬁ*ma“mt = {}

or, upon using the trigonometric identity
cos®u = Fcosu + 1 cosdu
we have, after collecting terms,
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Excluding the trivial case A = 0, we see that the above equation eannot hold
for all values of {. Hence our trial funetion A cos ! eannot be a solution.
From the fact that the term in cos 3wf appears in the above equation, however,
we might suspect that a trial solution of the form 1

f = A coswl + B cos 3wl

will represent. & better approximation than A cos w!. This turns out to be
the case. If we insert the above solution into Equation (3.49), we find, after
a procedure similar to that above, the following equation:

_ g, _ 9A (_ g _Ei‘)
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+ (terms in higher powers of B and higher multiples of wt) = 0
Again the equation will not hold for all values of ¢, but our approximate solu-




tion will be reasonably accurate if the coefficients of the first two cosine terms
can be made to vanish separately:

A2 9o gAY —op.2 o 9 _ gAY _
A+ 74 -5 =0 9B + 7B — 5 =

From the first equation

0

_9f; A
o=1(1-4

With this value of «?, we find from the second equation

a 1 o £
3(64 2747~ 192

B=—4A

Now, from our trial solution Equation 1  we see that the amplitude 8, of
the osecillation of the pendulum is given by
bp = A+ B
A3

=4 — 1o

or, if A is small,
B =~ A

The meaning of Equation 2  is now clear. The frequency of oscillation
depends on the amplitude &. In fact, we can write

1,,\"
”“—”x@(“a”)

or, for the period, we have




where T is the period for zero amplitude.

The above analysis, although it is admittedly very erude, brings out two
essential features of free osecillation under a nonlinear restoring foree; that is,
the period of oscillation is a function of the amplitude of vibration, and the
oscillation is not strictly sinuscidal but can be considered as the superposition
of a mixture of harmonics. It can be shown that the vibration of a nonlinear
system driven by a purely sinusoidal driving force will also be distorted; that
ig, it will contain harmonics. The loudspeaker of a radio receiver or a ““hi-fi’’
system, for example, may introduce distortion (harmonics) over and above
that introduced by the electronic amplifyving system.

Exact Solution of the Motion of the Simple
Pendulum by Means of Elliptic Integrals

From the expression for the potential energy of the simple pendulum
we can write the energy equation as follows:

im(lg)® + mgl(l — cos §) = E

If the pendulum is pulled aside at an angle 68, (the amplitude) and released
(8 = 0), then E = mgl(l — cos #;). The above equation then reduces to

ﬂ“=?[mﬂﬁ'4—nﬂaﬂn}

after transposing terms and dividing by mi®. By use of the identity cos § =
1 — 2 sin*(68/2), we can further write
_ iﬂ( inz % gins E‘)
& = 7 \sin® 5 sin?

It 1s expedient to express the motion in terms of the variable ¢ defined by the

equation

sin (6/2) 1 . #
sin (8o/2)  koP3

Upon differentiating with respect to {, we have
.1 AW,
(cos )¢ = - cos (ﬁ)g 4

From Hguations 3 and 4 we can readily transform Eguation (3.55)
into the corresponding equation 1n ¢, namely,

SN ¢ =

¢ = (1 — K*sin’ ¢)

The relationship between ¢ and ¢ is then found by separating variables and

integrafing:
PN A . ——
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The function Fk,¢) = LF (1 — k*sin® )" dy 15 known as the incomplele
elliptic integral of the first kind. The period of the pendulum is obtained by
noting that # increases from 0 to 6; in one quarter of a cycle. Thus we see
that ¢ goes from 0 to #/2 in the same time interval, Therefore, we may write
for the period T

/2
T=4\ﬁf do__ =4\FK{A:J
gJJo /1 —k'sinte g

The function K(k) = [ (1 — & sin® o)~ dp = F(kx/2) is ealled the com-

plete elliptic integral of the first kind. Values of the elliptic integrals are tabu-
lated.®* An approximate expression may be obtained, however, by expanding
the integrand in Equation by the binomial theorem and integrating
term by term. The result °

I [ Kt
T=4\ﬁf (1+—sin=¢r+- )d.p—zr\f(1+ + - )
gJo 2

Now, for small values of the amplitude 6, we have

o __ B
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k? = gin? —

Thus we may write approximately

T_%J;(l—klﬁ-lr )

which agrees with the value of T found in the previous section.

EXAMPLE

Find the period of a simple pendulum swinging with an amplitude of 20°.
Use tables of clliptic functions, and also compare with the values calculated
by the above approximations.

For an amplitode of 20° &k = sin 10° = 0.17365, and 6,/2 = 0.17453
radians. The results are as follows:

From tables and Equation (3.60) T = 4 +/T7g K(10°) = +/T7g (6.3312)

From Equation (3.61) T = 2= 4/1/g (1 + } sin® 10°) = /179 (6.3306)

From Equation (3.62) T = 2= /I/g (1 + 6:2/16) = +/1/y (6.3310)

Elementary formula Ty = 27 +/I/g = /1/g (6.2832)




