Al-Mustaqbal University College Department of Medical Instrumentation Techniques Engineering

Subject : Mathematics (I)

Class : First

Lecturer : Lect. Dr. Marwan A. Madhloom

Lecture One : Limit and Continuity

Limit and Continuity:

When f(x) close to the number L as x close to the number a, we write

 $f(x) \rightarrow L \text{ as } x \rightarrow a$ means: $\lim_{x \rightarrow a} f(x) = L$

Example 1: Let f(x) = 2x + 5 evaluate f(x) at x = 1

Sol:

$$\lim_{x \to a} f(x) = \lim_{x \to 1} (2x + 5) = 2 * 1 + 5 = 7$$

The Limit Laws:

If L, M, C, and k are real numbers and $\lim_{x\to c} f(x)L$ and $\lim_{x\to c} g(x) = M$

- 1. Sum Rule: $\lim_{x \to c} (f(x) + g(x)) = L + M$
- 2. Difference Rule: $\lim_{x \to c} (f(x) g(x)) = L M$
- 3. Constant Multiple Rule: $\lim_{x \to c} k. f(x) = k. L$
- 4. Product Rule: $\lim_{x \to c} (f(x), g(x)) = L.M$
- 5. Quotient Rule: $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{M}$, $M \neq 0$

- 6. Power Rule: $\lim_{x \to c} [f(x)]^n = L^n$
- 7. Root Rule: $\lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{L}$, n is a positive integer.

$$\frac{0}{0}$$
, $\frac{\infty}{\infty}$, $0^*\infty$, $\infty - \infty$, ∞^0 , 0^0

<u>Example</u>²: Evaluate the following limits

$$\lim_{x \to 1} \frac{x^3 - 1}{x - 1} = \frac{0}{0} = \infty$$
, then the solution , $x \neq 1$

Sol:

$$\lim_{x \to 1} \frac{x^3 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x^2 + x + 1)}{x - 1} = \lim_{x \to 1} x^2 + x + 1 = 1^2 + 1 + 1 = 3$$

Example 3: $\lim_{h \to 0} \frac{1}{h} (\frac{1}{x+h} - \frac{1}{x}), h \neq 0$

Sol:

$$\lim_{h \to 0} \left[\frac{1}{h} \left(\frac{1}{x+h} - \frac{1}{x} \right) \right] = \lim_{h \to 0} \left[\frac{1}{h} \left(\frac{x-x-h}{x(x+h)} \right) \right] = \lim_{h \to 0} \left[\frac{1}{h} \left(\frac{-h}{x(x+h)} \right) \right]$$
$$\lim_{h \to 0} \frac{-1}{x(x+h)} = -\frac{1}{x(x+0)} = -\frac{1}{x^2}$$

 Al-Mustaqbal University College
 Medical Instrumentation Engineering

 Techniques Department
 Techniques Department

 Example 4 :
 $\lim_{x \to -2} \sqrt{4x^2 - 3} = \sqrt{\lim_{x \to -2} (4x^2 - 3)} = \sqrt{4 * (-2)^2 - 3} = \sqrt{16 - 3} = \sqrt{13}$

 Noot Rule

Example5: Evaluate the following limits if they exist.

1)
$$\lim_{x \to -1} \frac{\sqrt{2+x}-1}{x+1}$$
, $x \neq -1$, $x \neq -2$

Sol:

$$\lim_{x \to -1} \frac{\sqrt{2+x}-1}{x+1} * \frac{\sqrt{2+x}+1}{\sqrt{2+x}+1} = \lim_{x \to -1} \frac{2+x-1}{x+1(\sqrt{2+x}+1)}$$
$$\lim_{x \to -1} \frac{x+1}{x+1(\sqrt{2+x}+1)} = \lim_{x \to -1} \frac{1}{(\sqrt{2+x}+1)} = \frac{1}{(\sqrt{2-1}+1)} = \frac{1}{2}$$

Limits of trigonometric functions.

$\lim_{x \to 0} \sin x = 0$	$\lim_{x \to 0} \cos x =$	$\lim_{x \to 0} \tan x = 0$	
$\lim_{x \to 0} \frac{\sin x}{x} = 1$	$\lim_{x \to 0} \frac{\sin ax}{ax} =$	$\lim_{x \to 0} \frac{\tan x}{x} = 1$	
$\lim_{x \to 0} \frac{\tan ax}{ax} =$	1	$\lim_{x \to 0} \frac{1 - \cos x}{x} = 0$	

<mark>Examples 6</mark>

1.
$$\lim_{x \to 0} \frac{\sin 2x}{5x} = \frac{1}{5} \lim_{x \to 0} \frac{\sin 2x}{x} = \frac{1}{5} \lim_{x \to 0} \frac{\sin 2x}{x} * \frac{2}{2}$$
$$= \frac{2}{5} \lim_{x \to 0} \frac{\sin 2x}{2x} = \frac{2}{5} * 1 = \frac{2}{5}$$

2.
$$\lim_{x \to 0} \frac{\sin 2x}{\sin 3x} = \lim_{x \to 0} \frac{\sin 2x \frac{2x}{2x}}{\sin 3x \frac{3x}{3x}} = \lim_{x \to 0} \frac{2x \frac{\sin 2x}{2x}}{3x \frac{\sin 3x}{3x}}$$

$$= \frac{2}{3} \lim_{X \to 0} \frac{\frac{\sin 2x}{2x}}{\frac{\sin 3x}{3x}} = \frac{2}{3} \frac{\lim_{X \to 0} \frac{\sin 2x}{2x}}{\lim_{X \to 0} \frac{\sin 3x}{3x}} = \frac{2}{3} * \frac{1}{1} = \frac{2}{3}$$

3. $\lim_{\theta \to 0} \frac{\theta}{\sin \theta} = \lim_{\theta \to 0} \frac{1}{\frac{\sin \theta}{\theta}} = \frac{1}{\lim_{\theta \to 0} \frac{\sin \theta}{\theta}} = \frac{1}{1} = 1$ 4. $\lim_{\theta \to 0} \frac{\sin^2 \theta}{\theta^2} = (\lim_{\theta \to 0} \frac{\sin \theta}{\theta})^2 = (1)^2 = 1$

or
$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} * \lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1*1=1$$

قسم هندسة تقتيات الاجهزة الطبية

Limits of infinity:

- 1- If k is constant, then $\lim_{x \to \infty} k = k$
- 2- $\lim_{x \to \infty} \frac{1}{x} = 0, \lim_{x \to -\infty} \frac{1}{x} = \frac{1}{\infty} = 0$ 3- $\lim_{x \to 0} \frac{1}{x} = \infty$

Examples 7:

- 1. $\lim_{x \to \infty} \frac{x}{2x+3} = \lim_{x \to \infty} \frac{1}{2+\frac{3}{x}} = \frac{1}{2+0} = \frac{1}{2}$
- 2. $\lim_{x \to \infty} \frac{2x^2 + 3x + 5}{5x^2 4x + 1} = \lim_{x \to \infty} \frac{2 + \frac{3}{x} + \frac{5}{x^2}}{5 \frac{4}{x} + \frac{1}{x^2}} = \frac{2 + 0 + 0}{5 0 + 0} = \frac{2}{5}$
- 3. $\lim_{x \to \infty} \frac{2x^2 + 1}{3x^2 2x^2 + 5x 2} = \lim_{x \to \infty} \frac{\frac{2}{x} + \frac{1}{x^3}}{3 \frac{2}{x} + \frac{5}{x^2} \frac{2}{x^3}} = 0$
- 4. $\lim_{x \to \infty} \frac{2x^2 + 1}{3x^2 2x^2 + 5x 2} = \lim_{x \to \infty} \frac{\frac{2}{x} + \frac{1}{x^3}}{3 \frac{2}{x} + \frac{5}{x^2} \frac{2}{x^3}} = 0$

كلية المستقبل الجامعـــــة

قسم هندسة تقتيات الاجهزة الطبية

<mark>H.W.</mark> :

1. If
$$f(x) = \frac{x^2 - 3x + 2}{x - 2}$$
, $x \neq 2$; find $\lim_{x \to 2} f(x)$.

2.
$$\lim_{x \to -2} \sqrt{4x^2 - 3} = \sqrt{\lim_{x \to -2} (4x^2 - 3)}$$

- 3. $\lim_{t \to 0} \frac{\tan t \sec 2t}{3t}$
- 4. $\lim_{x \to \infty} \frac{11x+2}{2x^3-1}$
- 5. $\lim_{x \to \infty} \frac{2x^2 + 1}{3x^2 2x^2 + 5x 2}$