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4. The Second Law of Thermodynamics 

 It can be started that, according to the first law of thermodynamics, when a system 

undergoes a complete cycle then the net heat supplied is equal to the net work done. 

This is based on the conservation of energy principle, which follows from observation of 

natural events. The second law came up as embodiment of real happenings while retaining 

the basic nature of the first law of thermodynamics. Feasibility of process, direction of 

process and grades of energy such as low and high are the potential answers provided by the 

2nd law. The second law of thermodynamics is capable of indicating the maximum possible 

efficiencies of heat engines, coefficient of performance of heat pumps and refrigerators, 

defining a temperature scale independent of physical properties etc. The Second Law of 

thermodynamics, which is also a natural law, indicates that, although the net heat supplied in 

a cycle is equal to the net work done, the gross heat supplied must be greater than the net 

work done; some heat must always be rejected by the system. This law can be understood by 

considering the heat pump and heat engine. 

Thermal Reservoir 

 A thermal reservoir is defined as a sufficiently large system in stable equilibrium to 

which and from which a finite amount of heat can be transferred without any change in its 

temperature. 

 Heat source: is a high temperature reservoir such as: boiler, furnace, combustion 

chamber, nuclear reactor, the sun, etc. 

 Heat sink: is a low temperature reservoir such as: condenser, atmospheric air, river 

water, ocean, etc. 

Heat Engine 

 It is defined as the system operating in a complete cycle and developing a net work 

from a supply of heat. The second law implies a source of heat and sink of heat are both 

necessary. Let the heat supplied from the source be 𝑄𝐻, let the heat rejected to the sink be 𝑄𝐿 

and let the net work done by the engine be 𝑊. apply the first law of thermodynamics: 

∑ 𝑑𝑄 = ∑ 𝑑𝑊             … … … … … … … (4.1) 

𝑄𝐻 − 𝑄𝐿 = 𝑊            … … … … … … … (4.2) 

According to the second law the gross heat supplied must be greater 

than the net work. 

𝑄𝐻 > 𝑊            … … … … … … … (4.3) 
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 The thermal efficiency is defined as the ratio of the net work done during the cycle to 

gross heat supplied during the cycle. 

𝜂 =
𝑊

𝑄𝐻
=

𝑄𝐻 − 𝑄𝐿

𝑄𝐻
= 1 −

𝑄𝐿

𝑄𝐻
            … … … … … … … (4.4) 

The thermal efficiency of a heat engine is always less than 100%.  

 It can be seen that a temperature difference is always required for heat to flow; 

therefore the source must be at higher temperature than the sink. 

Heat Pump and Refrigerator 

 It is the inverse of heat engine. Work is done on the system. The net work done on the 

system equals the net heat rejected by the system. In the heat pump an amount of heat 𝑄𝐿 is 

supplied from cold reservoir and amount of heat 𝑄𝐻 is rejected to the hot reservoir. 

According to the first law of thermodynamics: 

∑ 𝑑𝑄 = ∑ 𝑑𝑊             … … … … … … … (4.5) 

𝑄𝐻 − 𝑄𝐿 = 𝑊 

𝑄𝐻 = 𝑄𝐿 + 𝑊            … … … … … … … (4.6) 

Therefore, in order to transfer heat from a cold reservoir to a hot reservoir 

a work must be done. 

𝑊 > 0            … … … … … … … (4.7) 

 As heat a pump is not a work producing machine and also its objective is to maintain 

a body at higher temperature, so its performance can’t be defined using efficiency as in the 

case of heat engines. Performance of a heat pump is quantified through a parameter called 

coefficient of performance (𝐶. 𝑂. 𝑃). Coefficient of performance is defined by the ratio of 

desired effect and net work done for getting the desired effect. 

𝐶. 𝑂. 𝑃. =
Desired effect

Net work done
            … … … … … … … (4.8) 

𝐶. 𝑂. 𝑃. =
𝑄𝐻

𝑊
            … … … … … … … (4.9) 

𝑊 = 𝑄𝐻 − 𝑄𝐿             … … … … … … … (4.10) 

𝐶. 𝑂. 𝑃. =
𝑄𝐻

𝑄𝐻 − 𝑄𝐿
            … … … … … … … (4.11) 
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 A Refrigerator is a device similar to a heat pump but with reverse objective. It 

maintains a body at a temperature lower than that of the surroundings while operating in a 

cycle. 

 Refrigerator also performs a non-spontaneous process of 

extracting heat from low temperature body for maintaining it cool, 

therefore external work 𝑊 is to be done for realizing it. The block 

diagram shows how refrigerator extracts heat 𝑄𝐿 for maintaining 

body at low temperature 𝑇𝐿 at the expense of work 𝑊 and rejects 

heat to high temperature surroundings. 

 Performance of refrigerator is also quantified by coefficient of 

performance, which could be defined as: 

(𝐶. 𝑂. 𝑃. )𝑟𝑒𝑓. =
Desired effect

Net work
=

𝑄𝐿

𝑊
            … … … … … … … (4.12) 

𝑊 = 𝑄𝐻 − 𝑄𝐿             … … … … … … … (4.13) 

(𝐶. 𝑂. 𝑃. )𝑟𝑒𝑓. =
𝑄𝐿

𝑄𝐻 − 𝑄𝐿
            … … … … … … … (4.14) 

(𝐶. 𝑂. 𝑃. ) values of a heat pump and a refrigerator can be interrelated as: 

(𝐶. 𝑂. 𝑃. )𝐻𝑃 = (𝐶. 𝑂. 𝑃. )𝑟𝑒𝑓. + 1            … … … … … … … (4.15) 

Statements of the Second Law of Thermodynamics 

1. Kelvin-Planck statement: no process is possible whose sole effect is the removal of heat 

from a single thermal reservoir at a uniform temperature and the performance of an equal 

amount of work. 
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2. Clausius statement: no process is possible whose sole effect is the removal of heat from a 

reservoir at a lower temperature and the absorption of equal amount of heat by a reservoir at a 

higher temperature. 

 

 

 

 

 

 

 

 

Entropy 

 Entropy is the outcome of the second law of thermodynamics and is a thermodynamic 

property. It is a thermodynamic quantity representing the unavailability of a system's thermal 

energy for conversion into mechanical work, often interpreted as the degree of disorder or 

randomness in the system. This property has immense significance in thermodynamic process 

analysis. 

Clausius Inequality 

 The inequality of Clausius is a corollary or a consequence of the second law of 

thermodynamics. It is valid for all possible cycles, including both reversible and irreversible 

heat engines and refrigerators. 

∮
𝛿𝑄

𝑇
≤ 0            … … … … … … … (4.16) 

∮
𝛿𝑄

𝑇
= 0 , for reversible cycle 

∮
𝛿𝑄

𝑇
< 0 , for irreversible cycle 

∮
𝛿𝑄

𝑇
> 0 , for impossible cycle 

Entropy a Property of System 

 From Clausius inequality it is shown that for a reversible cycle: 
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∮
𝛿𝑄

𝑇
= 0 

 Let us take a reversible cycle comprising of two processes A and B as shown and 

apply Clausius inequality. 

∫
𝛿𝑄

𝑇

𝑏

𝑎 𝑝𝑎𝑡ℎ 𝐴

+ ∫
𝛿𝑄

𝑇

𝑎

𝑏 𝑝𝑎𝑡ℎ 𝐵

= 0            … … … … … … … (4.17) 

∫
𝛿𝑄

𝑇

𝑏

𝑎 𝑝𝑎𝑡ℎ 𝐴

= − ∫
𝛿𝑄

𝑇

𝑎

𝑏 𝑝𝑎𝑡ℎ 𝐵

            … … … … … … … (4.18) 

∫
𝛿𝑄

𝑇

𝑏

𝑎 𝑝𝑎𝑡ℎ 𝐴

= ∫
𝛿𝑄

𝑇

𝑏

𝑎 𝑝𝑎𝑡ℎ 𝐵

            … … … … … … … (4.19) 

 Since ∮
𝛿𝑄

𝑇
 is the same for all reversible paths between state a and state b. It can be 

concluded that this quantity is independent on path and is a function of end states. Therefore, 

it is a property of the system. This property is called entropy and given the symbol "S". 

𝑑𝑆 = (
𝛿𝑄

𝑇
)

𝑟𝑒𝑣.
            … … … … … … … (4.20) 

 Entropy is an extensive property. The change in the entropy of the system as it 

undergoes a change of state may be found as: 

∫ 𝑑𝑆 = ∫
𝛿𝑄

𝑇

2

1

2

1

            … … … … … … … (4.21) 

𝑆2 − 𝑆1 = ∫
𝛿𝑄

𝑇

2

1

            … … … … … … … (4.22) 

 To perform this integration the relation between 𝑄 and 𝑇 must be known. Since 𝑄 is a 

path function therefore, 𝛿𝑄 is an exact differential. 

𝑑𝑆 = (
𝑑𝑄

𝑇
)

𝑟𝑒𝑣.
            … … … … … … … (4.23) 

𝑑𝑄 = 𝑇𝑑𝑆            … … … … … … … (4.24) 

 Therefore, there is a diagram on which area to represents the heat flow in a reversible 

process. This diagram is called (T-S) diagram. 

∫ 𝑑𝑄 = ∫ 𝑇𝑑𝑆
2

1

2

1
            … … … … … … … (4.25) 

𝑄 = ∫ 𝑇𝑑𝑆
2

1

            … … … … … … … (4.26) 

 

 

(T-S) diagram 
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 Therefore, the heat flow is a reversible process and can be represented as the area 

under the curve on the (T-S) diagram. 

(T-S) Diagram for Vapor 

 The (T-S) diagram of a vapor is shown in figure below. Lines 𝑃1, 𝑃2, 𝑃3 … 𝑃𝑛 are lines 

of constant pressure. These lines are incident with the saturated liquid line in the liquid 

region. The constant pressure lines are horizontal in the mixture phase region and curve 

upward in the superheated region. The lines of constant volume are concave down in the 

mixed phase region and concave up in the superheated region. The slop of the constant 

volume lines is greater than the slop of constant pressure lines in the superheated region. 

 The entropy of saturated liquid is given the symbol 𝑠𝑓 and the entropy of saturated 

vapor is given the symbol 𝑠𝑔. 𝑠𝑓 and 𝑠𝑔 are found from the tables according to the quality of 

vapor. The entropy of wet vapor is calculated as follows: 

𝑠 = 𝑠𝑓 + 𝑥𝑠𝑓𝑔 

For isentropic processes: 

∆𝑠 = 0 

 

Example (4.1): A rigid cylinder of volume 0.025 m
3
 contains steam at 80 bar and 350°C. 

The cylinder is cooled until the pressure is 50 bar. Calculate the quality of steam after 

cooling, the amount of heat rejected during the process and the change in entropy. 

Sketch the (T-S) diagram indicating the area which represents the heat flow. 

Solution: 

At 80 bar and 350°C the steam is superheated because 𝑇 > 𝑇𝑠𝑎𝑡. 

From superheated steam tables at (80 bar = 8 MPa) and 350°C: 

𝑠1 = 6.1301 kJ/kg. K, 𝑢1 = 2750 kJ/kg, 𝑣1 = 0.02995 m3/kg 

𝑣2 = 𝑣1 = 0.02995 m3/kg 



Thermodynamics                                                                      Second stage 
 

30 
 

From saturated steam tables at 50 bar (𝑣𝑓 = 0.001286 m3/kg, 𝑣𝑔 = 0.03944 m3/kg) 

Since 𝑣𝑓 < 𝑣2 < 𝑣𝑔, so the steam is in the wet phase 

𝑣2 = 𝑥. 𝑣𝑔 → 𝑥 =
𝑣2

𝑣𝑔
=

0.02995

0.03944
 

𝒙 = 𝟎. 𝟕𝟓𝟖 Ans. 

From saturated steam tables at 50 bar (𝑢𝑓 = 1147.81 kJ/kg, 𝑢𝑓𝑔 = 1449.3 kJ/kg) 

                                                             (𝑠𝑓 = 2.9202 kJ/kg. K, 𝑠𝑓𝑔 = 3.0532 kJ/kg. K) 

𝑢2 = 𝑢𝑓 + 𝑥. 𝑢𝑓𝑔 = 1147.81 + 0.758 × 1449.3 = 2247 kJ/kg 

𝑠2 = 𝑠𝑓 + 𝑥. 𝑠𝑓𝑔 = 2.9202 + 0.758 × 3.0532 = 5.2345 kJ/kg. K 

𝑚 =
𝑉1

𝑣1
=

0.025

0.02995
= 0.835 kg 

𝑄 = 𝑚(𝑢2 − 𝑢1) + 𝑊 = 0.835 × (2247 − 2750) + 0 

𝑸 = −𝟒𝟐𝟎 𝐤𝐉 Ans. 

∆𝑆 = 𝑚(𝑠2 − 𝑠1) = 0.835 × (5.2345 − 6.1301) 

∆𝑺 = −𝟎. 𝟕𝟒𝟕𝟖 𝐤𝐉/𝐊 Ans. 

Entropy Change for Perfect Gas 

 The first law of thermodynamics for non-flow reversible and irreversible processes 

and in the absence of potential and kinetic energies is: 

𝛿𝑄 − 𝛿𝑊 = 𝑑𝑈 

If the process is reversible, then: 

(𝛿𝑄)𝑟𝑒𝑣. − 𝛿𝑊 = 𝑑𝑈            … … … … … … … (4.27) 

Also from the second law of thermodynamics, for reversible processes 𝑑𝑆 = (
𝑑𝑄

𝑇
)

𝑟𝑒𝑣.
 so: 

𝑇. 𝑑𝑆 = 𝑃. 𝑑𝑉 + 𝑑𝑈            … … … … … … … (4.28) 

𝑇. 𝑑𝑆 = 𝑃. 𝑑𝑉 + 𝑑(𝐻 − 𝑃𝑉) = 𝑃. 𝑑𝑉 + 𝑑𝐻 − 𝑉. 𝑑𝑃 − 𝑃. 𝑑𝑉 

𝑇. 𝑑𝑆 = 𝑑𝐻 − 𝑉. 𝑑𝑃 

𝑑𝑆 =
𝑑𝐻

𝑇
−

𝑉. 𝑑𝑃

𝑇
            … … … … … … … (4.29) 

 

 

50 bar 

80 bar 1 

2 

S 

T 

S2 S1 

V1 
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Integrating equations (4.28) and (4.29), we get: 

𝑆2 − 𝑆1 = ∫ (
𝑃. 𝑑𝑉

𝑇
)

2

1

+ ∫
𝑑𝑈

𝑇

2

1

            … … … … … … … (4.30) 

𝑆2 − 𝑆1 = ∫
𝑑𝐻

𝑇

2

1

− ∫
𝑉. 𝑑𝑃

𝑇

2

1

            … … … … … … … (4.31) 

For a perfect gas: 

𝑑𝑈 = 𝑚𝐶𝑣𝑑𝑇, 𝑑𝐻 = 𝑚𝐶𝑝𝑑𝑇,
𝑃

𝑇
=

𝑚𝑅

𝑉
,
𝑉

𝑇
=

𝑚𝑅

𝑃
 

Hence, equations (4.30) and (4.31) become: 

𝑆2 − 𝑆1 = 𝑚𝑅 ∫
𝑑𝑉

𝑉

2

1

+ 𝑚𝐶𝑣 ∫
𝑑𝑇

𝑇

2

1

            … … … … … … … (4.32) 

𝑆2 − 𝑆1 = 𝑚𝐶𝑝 ∫
𝑑𝑇

𝑇

2

1

− 𝑚𝑅 ∫
𝑑𝑃

𝑃

2

1

            … … … … … … … (4.33) 

𝑆2 − 𝑆1 = 𝑚𝑅 ln (
𝑉2

𝑉1
) + 𝑚𝐶𝑣 ln (

𝑇2

𝑇1
)            … … … … … … … (4.34) 

𝑆2 − 𝑆1 = 𝑚𝐶𝑝 ln (
𝑇2

𝑇1
) − 𝑚𝑅 ln (

𝑃2

𝑃1
)            … … … … … … … (4.35) 

 Equations (4.34) and (4.35) can be used to calculate the entropy change for any 

reversible thermodynamic process as follows: 

1. Constant volume (isochoric) process: during such processes 𝑑𝑉 = 0, so equation (4.34) 

becomes: 

𝑆2 − 𝑆1 = 𝑚𝐶𝑣 ln (
𝑇2

𝑇1
)            … … … … … … … (4.36) 

For unit mass: 

𝑠2 − 𝑠1 = 𝐶𝑣 ln (
𝑇2

𝑇1
)            … … … … … … … (4.37) 

2. Constant pressure (isobaric) process: during such processes 𝑑𝑃 = 0, so equation (4.35) 

becomes:  

𝑆2 − 𝑆1 = 𝑚𝐶𝑝 ln (
𝑇2

𝑇1
)            … … … … … … … (4.38) 

For unit mass: 

 

 

(T-S) diagram for 

isochoric process 

(T-S) diagram for 

isobaric process 
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𝑠2 − 𝑠1 = 𝐶𝑝 ln (
𝑇2

𝑇1
)            … … … … … … … (4.39) 

3. Constant temperature (isothermal) process: during such processes 𝑑𝑇 = 0, so equations 

(4.34) and (4.35) become: 

𝑆2 − 𝑆1 = 𝑚𝑅 ln (
𝑉2

𝑉1
)            … … … … … … … (4.40) 

𝑆2 − 𝑆1 = 𝑚𝑅 ln (
𝑃1

𝑃2
)            … … … … … … … (4.41) 

For unit mass: 

𝑠2 − 𝑠1 = 𝑅 ln (
𝑉2

𝑉1
)            … … … … … … … (4.42) 

𝑠2 − 𝑠1 = 𝑅 ln (
𝑃1

𝑃2
)            … … … … … … … (4.43) 

4. Reversible adiabatic (isentropic) process: for these processes 𝑑𝑄 = 0. Hence:  

∆𝑆 = 𝑆2 − 𝑆1 = 0            … … … … … … … (4.44) 

𝑆2 = 𝑆1             … … … … … … … (4.45) 

For irreversible adiabatic processes: 

∆𝑆 = (𝑆2 − 𝑆1) > 0            … … … … … … … (4.46) 

5. Polytropic process: these processes follow the law 𝑃𝑉𝑛 = 𝐶. Using equation (4.34): 

𝑆2 − 𝑆1 = 𝑚𝑅 ln (
𝑉2

𝑉1
) + 𝑚𝐶𝑣 ln (

𝑇2

𝑇1
) 

Substituting the relation (
𝑉2

𝑉1
) = (

𝑇1

𝑇2
)

1

𝑛−1
 into the above equation gives:  

𝑆2 − 𝑆1 = 𝑚𝑅 ln (
𝑇1

𝑇2
)

1
𝑛−1

 + 𝑚𝐶𝑣 ln (
𝑇2

𝑇1
)            … … … … … … … (4.47) 

𝑆2 − 𝑆1 =
𝑚𝑅

𝑛 − 1
ln (

𝑇1

𝑇2
) + 𝑚𝐶𝑣 ln (

𝑇2

𝑇1
)            … … … … … … … (4.48) 

For a perfect gas, 𝑅 = 𝐶𝑝 − 𝐶𝑣, 𝛾 =
𝐶𝑝

𝐶𝑣
 

So, 𝑅 = 𝛾. 𝐶𝑣 − 𝐶𝑣 = 𝐶𝑣(𝛾 − 1) 

Substituting R in equation (4.48): 

 

 

 

(T-S) diagram for 

isothermal process 

(T-S) diagram for 

isentropic process 

(T-S) diagram for 

polytropic process 
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𝑆2 − 𝑆1 = 𝑚𝐶𝑣 ln (
𝑇2

𝑇1
) +

𝑚𝐶𝑣(𝛾 − 1)

𝑛 − 1
ln (

𝑇1

𝑇2
)            … … … … … … … (4.49)  

𝑆2 − 𝑆1 = 𝑚𝐶𝑣 ln (
𝑇2

𝑇1
) {1 − (

𝛾 − 1

𝑛 − 1
)}            … … … … … … … (4.50) 

𝑆2 − 𝑆1 = 𝑚𝐶𝑣 ln (
𝑇2

𝑇1
) (

𝑛 − 𝛾

𝑛 − 1
)            … … … … … … … (4.51) 

For unit mass: 

𝑠2 − 𝑠1 = 𝐶𝑣 ln (
𝑇2

𝑇1
) (

𝑛 − 𝛾

𝑛 − 1
)            … … … … … … … (4.52) 

Example (4.2): Air at 15°C and 1.05 bar occupies 0.02 m
3
. The air is heated at constant 

volume until the pressure is 4.2 bar and then cooled at constant pressure to the original 

temperature. Calculate the net heat flow to or from the air and the net entropy change. 

Solution: 

𝑚 =
𝑃𝑉

𝑅𝑇
=

1.05 × 105 × 0.02

287 × (15 + 273)
= 0.0254 kg 

𝑇2

𝑇1
=

𝑃2

𝑃1
→ 𝑇2 = (15 + 273) ×

4.2

1.05
→ 𝑇2 = 1152 K 

𝑄1−2 = 𝑚𝐶𝑣(𝑇2 − 𝑇1) = 0.0254 × 0.718 × (1152 − 288) = 15.75 kJ 

𝑄2−3 = 𝑚𝐶𝑝(𝑇3 − 𝑇2) = 0.0254 × 1.005(288 − 1152) = −22.05 kJ 

𝑄𝑛𝑒𝑡 = 𝑄1−2 + 𝑄2−3 = 15.75 + (−22.05) 

𝑸𝒏𝒆𝒕 = −𝟔. 𝟑 𝐤𝐉 Ans. 

∆𝑆 = 𝑆3 − 𝑆1 = (𝑆2 − 𝑆1) + (𝑆3 − 𝑆2) 

(𝑆2 − 𝑆1) = 𝑚𝐶𝑣 ln (
𝑇2

𝑇1
) = 0.0254 × 0.718 × ln (

1152

288
) = 0.0253 kJ/K 

(𝑆3 − 𝑆2) = 𝑚𝐶𝑝 ln (
𝑇3

𝑇2
) = 0.0254 × 1.005 × ln (

288

1152
) = −0.0354 kJ/K 

∆𝑆 = 0.0253 + (−0.0354) 

∆𝑺 = −𝟎. 𝟎𝟏𝟎𝟏 𝐤𝐉/𝐊 Ans. 

Example (4.3): Calculate the change of entropy per kg of air expanding polytropically in 

a cylinder behind a piston from 6.3 bar and 550°C to 1.05 bar according to the law 

𝑷𝑽𝟏.𝟑 = 𝑪. 
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Solution: 

𝑇2

𝑇1
= (

𝑃2

𝑃1
)

𝑛−1
𝑛

→ 𝑇2 = (550 + 273) × (
1.05

6.3
)

1.3−1
1.3

= 544 K 

𝑠2 − 𝑠1 = 𝐶𝑣 ln (
𝑇2

𝑇1
) (

𝑛 − 𝛾

𝑛 − 1
) = 0.718 × ln (

544

823
) × (

1.3 − 1.4

1.3 − 1
) 

∆𝒔 = 𝟎. 𝟏 𝐤𝐉/𝐤𝐠. 𝐊 Ans. 
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Exercises 

Problem (4.1): Determine the change in entropy of 0.5 kg of air compressed polytropically 

from 1.013×10
5
 Pa to 0.8 MPa and 800 K, following an index of 1.2. Take Cv = 0.71 kJ/kg.K. 

Ans. (-122.27 J/K) 

Problem (4.2): 1 m
3
 of air is heated reversibly at constant pressure from 15°C to 300°C, and 

is then cooled reversibly at constant volume back to the initial temperature. The initial 

pressure is 1.03 bar. Calculate the net heat flow and the overall change of entropy. Sketch the 

processes on a (T-S) diagram. 

Ans. (101.5 kJ, 0.246 kJ/K) 

Problem (4.3): 1 kg of air is allowed to expand reversibly in a cylinder behind a piston in 

such a way that the temperature remains constant at 260°C while the volume is doubled. The 

piston is then moved in and heat is rejected by the air reversibly at constant pressure until the 

volume is the same as it was initially. Calculate the net heat flow and the overall change of 

entropy. Sketch the processes on a (T-S) diagram. 

Ans. (-161.9 kJ/kg, -0.497 kJ/kg.K) 

Problem (4.4): 1 kg of air at 1.02 bar and 20°C, undergoes a process in which the pressure is 

raised to 6.12 bar and the volume becomes 0.25 m
3
. Calculate the change of entropy and 

mark the initial and final states on a (T-S) diagram. 

Ans. (0.087 kJ/kg.K) 




