Arrays

Scalars: Variables that represent single numbers, as considered to this point.
Arrays: Variables that represent more than one number. Each number is called an element of the array.

Row and Column Arrays: A row of numbers (called a row vector) or a column of numbers (called a column vector).

Two-Dimensional Arrays: A two-dimensional table of numbers, called a matrix.
Array Indexing or Addressing: Indicates the location of an element in the array.
EX1: consider computing, $\mathrm{y}=\sin (\mathrm{x})$ for $0 \leq \mathrm{x} \leq \pi$.

x	0	0.1π	0.2π	0.3π	0.4π	0.5π	0.6π	0.7π	0.8π	0.9π	π
y	0	.31	.59	.81	.95	1.0	.95	.81	.59	.31	0

EX2: Generate two vectors, x and y , then display the values such that $\mathrm{x}(1)$ and $\mathrm{y}(1)$ are on the same line,
>> $\mathrm{x}=0: 4$;
>> y = 5:5:25;
>> A = [x' $\left.y^{\prime}\right]$
$\mathrm{A}=$
05
110
215 Note that the matrix A has been created from the vectors x and y .
320
425

Al-Mustaqbal University College
Department of Medical Instrumentation Techniques Engineering Class: Third
Subject: Arrays, Built in functions, Basic Matrix Functions
Lecturer: Dr. Ali Kareem Abbas
Lecture: (5)

Array Operations

Element-by-Element Array-Array Mathematics

When two arrays have the same dimensions, addition, subtraction, multiplication, and division apply on an element-by-element basis.

Operation	Algebraic Form	MatLAB
Addition	$a+b$	$\mathrm{a}+\mathrm{b}$
Subtraction	$a-b$	$\mathrm{a}-\mathrm{b}$
Multiplication	$a \times b$	$\mathrm{a} \cdot * \mathrm{~b}$
Division	$a \div b$	$\mathrm{a} \cdot / \mathrm{b}$
Exponentiation	a^{b}	$\mathrm{a} \cdot{ }^{\wedge} \mathrm{b}$

Example:

> A = $\left.\begin{array}{lll}2 & 5 & 6\end{array}\right] ;$		
$\gg B=\left[\begin{array}{ll}2 & 3\end{array}\right.$		
$\gg \mathrm{C}=\mathrm{A} . * \mathrm{~B}$		
$\mathrm{C}=$		
415	30	
>> $\mathrm{D}=\mathrm{A} . / \mathrm{B}$		
$\mathrm{D}=$		
1.0000	1.6667	1.2000
$\gg \mathrm{E}=\mathrm{A} . \wedge$ B		
$\mathrm{E}=$		
4	125	7776

Built-in function

A built-in function is part of the MATLAB executable. MATLAB does not implement these functions in the MATLAB language. Although most built-in functions have a .m file associated with them, this file only supplies documentation for the function.

MATLAB includes many built-in functions for math operations. Here are a number of the most important ones.

For these functions, you are specifying input arguments (i.e. 5 is the input argument in the example).

- $\operatorname{sqrt(5)} \quad \%$ square root of 5
- $\sin (\mathrm{pi}) \quad \%$ sine of pi radians
- $\cos (\mathrm{pi} / 2) \quad \%$ cosine of $\mathrm{pi} / 2$
- $\operatorname{asin}(1) \quad \% \operatorname{arcsine}$ of 1
- $\operatorname{sind}(75) ~ \% ~ s i n e ~ o f ~ 75 ~ d e g r e e s ~$
- abs(-5) \% absolute value of -5
- $\log (5) \quad \%$ natural logarithm (base e) of 5
- $\log 10(5) ~ \% ~ l o g a r i t h m ~(b a s e ~ 10) ~ o f ~ 5 ~$
- $\exp (5) ~ \% ~ e^{\wedge 5}$

If multiple arguments, separate them by commas, as in the example:

- round $(5,3) \quad \%$ round 5.3 (.5 or greater rounds up)
- fix $(5,3) \quad \%$ round towards 0
- floor(5,3) \% round towards -inf

Al-Mustaqbal University College
Department of Medical Instrumentation Techniques Engineering Class: Third
Subject: Arrays, Built in functions, Basic Matrix Functions
Lecturer: Dr. Ali Kareem Abbas

Lecture: (5)

- ceil $(5,3) \quad \%$ round towards +inf
- $\operatorname{rem}(15,2) \quad \%$ remainder of $15 / 2$
- $\bmod (15,2) \quad \%$ similar to rem $\%$ but can give negative (congruent) answers
- $\operatorname{sign}(\mathrm{x}) \quad \% 1$ for $\mathrm{x}>0,0$ for $\mathrm{x}=0,-1$ for $\mathrm{x}<0$

Basic Matrix Functions

MATLAB software provides functions that implement basic statistics. These are:

Function	Description	Function	Description
sum(x)	The sum of the elements of x matrix	Length(x)	Length of largest array dimension
$\max (\mathrm{x})$	Find the largest element in a matrix	$\operatorname{Size}(\mathrm{x})$	returns the sizes of each dimension of array
$\min (\mathrm{x})$	Find the smallest element in a matrix	$\operatorname{Sort}(\mathrm{x})$	Sort array elements
$\operatorname{mean}(\mathrm{x})$	Find the average of the elements of matrix	Product of array elements	
$\operatorname{median(x)}$	Find the median value of the elements of matrix	Transpose(x)	Transpose array
$\operatorname{diag(x)}$	Create diagonal matrix or get diagonal elements of matrix	Find(x)	Find indices and values of nonzero elements

Al-Mustaqbal University College
Department of Medical Instrumentation Techniques Engineering Class: Third
Subject: Arrays, Built in functions, Basic Matrix Functions
Lecturer: Dr. Ali Kareem Abbas
Lecture: (5)

Examples

```
>>A=[5 7 9; 4 6 5; 1 9 8]
>>sum(A) %Create a matrix and compute the sum of the elements in each column.
ans =
    10\quad22 22
>> sum(A,2) % Create a matrix and compute the sum of the elements in each row.
ans =
    21
    15
    18
>> max(A) % find the row vector containing the maximum value of each column.
ans =
    5 9 9
>> max(A,[],2) % compute the largest element in each row.
ans =
        9
        6
        9
>> min(A) %find a row vector containing the minimum value of each column.
ans =
    6 5
>> min(A,[],2) % compute the smallest element in each row.
ans =
    5
    4
    1
```

Al-Mustaqbal University College
Department of Medical Instrumentation Techniques Engineering Class: Third
Subject: Arrays, Built in functions, Basic Matrix Functions Lecturer: Dr. Ali Kareem Abbas

Lecture: (5)
>> mean $(\mathrm{A}) \quad \%$ compute the mean of each column.
ans $=$
3.33337 .33337 .3333
>> mean $(\mathrm{A}, 2) \quad \%$ compute the mean of each row.
ans $=$
7
5
6
\gg median(A) \% Find the median value of each column.
ans $=$
478
>> median(A,2) \% Find the median value of each row.
ans $=$
7
5
8
$\gg \mathrm{p}=\operatorname{prod}(\mathrm{A})$
$\mathrm{p}=$
$20 \quad 378 \quad 360$
$\gg \mathrm{p}=\operatorname{prod}(\mathrm{A}, 2)$
$\mathrm{p}=$
315
120
72

```
>>v}=[\begin{array}{lllll}{2}&{1}&{-1}&{-2}&{-5}\end{array}]
>> D = diag(v) % create a matrix with the elements of v on the main diagonal.
D =
    2 0}0000
    0
    0
    0
    0
    >> X = diag(A) % Get the elements on the main diagonal of a random 3-by-3 matrix.
    X =
        5
        6
        8
    >>L= length(A)
    L=
        3
    >> [m,n]=size(A) % return the number of rows (m) and columns (n)
    m=3
    n=3
    >>S=sort(A,2) % Create a matrix and sort each of its rows in ascending order.
    S =
    5 7 9
    5 6
    1 8 9
```

Al-Mustaqbal University College
Department of Medical Instrumentation Techniques Engineering Class: Third
Subject: Arrays, Built in functions, Basic Matrix Functions
Lecturer: Dr. Ali Kareem Abbas
Lecture: (5)
> $\mathrm{T}=$ transpose(A) $\quad \% \mathrm{~T}$ has the same elements as A , but the rows of T are the columns of A and the columns of T are the rows of A .
$\mathrm{T}=$
541
769
$9 \quad 5 \quad 8$
Find function
If X is a vector, then find returns a vector with the same orientation as X .

If X is a multidimensional array, then find returns a column vector of the linear indices of the result.

```
\(\gg \mathrm{k}=\) find \((\mathrm{A}>5) \quad\) \% Find indices of values greater than 5.
    \(\left[\begin{array}{lll}5 & 7 & 9 \\ 4 & 6 & 5 \\ 1 & 9 & 8\end{array}\right] \rightarrow\left[\begin{array}{lll}0 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1\end{array}\right] \rightarrow\left[\begin{array}{lll}1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9\end{array}\right]\)
    matrix A
    A>5 locations
\(\mathrm{k}=\)4567
9
```

Al-Mustaqbal University College
Department of Medical Instrumentation Techniques Engineering Class: Third
Subject: Arrays, Built in functions, Basic Matrix Functions Lecturer: Dr. Ali Kareem Abbas Lecture: (5)
$\gg[$ row, col $]=\operatorname{find}(\mathrm{A}>5) \quad \%$ Find indices of values greater than 5.

row $=$
1
2

3

1
3
$\mathrm{col}=$
2
2
2
3
3

