

محاضرات إحصاء طبي / نظري 5

المرحلة الثانية

قّسم التخدير

م. د. اينـاس رضا علي

MEASURES OF DISPERSION

Quartile Deviation or Semi-inter quartile Range (QD)

\checkmark QD is defined as the half of the range between the quartiles
\checkmark It is based on the upper and the lower Quartile and covers 50% of the observations.
\checkmark It does not depend on all observations
\checkmark For distributions with the Open Ends QD is the best measure of dispersion
\checkmark QD is independent of the change of Origin but dependent on the change of Scale.

Merits Of Quartile Deviation

\checkmark It's easy to understand and easy to calculate.
\checkmark It is least affected by extreme values.
\checkmark It can be used in the open-end frequency distribution.

What is Quartile Deviation Formula?

The Quartile Deviation (QD) is the product of half of the difference between the upper and lower quartiles. Mathematically we can define it as:

$$
\text { QuartileDeviation }(\mathbf{Q D})=\frac{\mathbf{Q}_{3}-\mathbf{Q}_{1}}{2}
$$

And

$$
\begin{aligned}
& \mathrm{Q}_{1}=\frac{1}{4}(\mathrm{~N}+1)^{\mathrm{th}} \text { position } \\
& \mathrm{Q}_{3}=\frac{3}{4}(\mathrm{~N}+1)^{\mathrm{th}} \text { position }
\end{aligned}
$$

N is the number data.
Q_{1} is the lower quartile.
Q_{3} is the upper quartile.
So, to calculate Quartile deviation, you need to first find out Q_{1}, then the second step is to find Q_{3} and then make a difference of both, and the final step is to divide by 2 .

Coefficient of QuartileDeviation $(C Q D)=\frac{Q_{3}-Q_{1}}{Q_{3}+Q_{1}}$

Quartile Deviation Formula

$$
\begin{aligned}
& \begin{array}{c}
\text { Quartile } \\
\text { Deviation }
\end{array}=\frac{\left(\mathrm{Q}_{3}-\mathrm{Q}_{1}\right)}{2} \\
& \text { Coefficient of } \\
& \text { Quartile Deviation }=\frac{\left(\mathrm{Q}_{3}-\mathrm{Q}_{1}\right)}{\left(\mathrm{Q}_{3}+\mathrm{Q}_{1}\right)}
\end{aligned}
$$

Example 1

Obtained Scores
$24,25,23,26,29,30,27,35,34,36,28$
Find Quartile Deviation and Coefficient of Quartile Deviation?
Solution:
First, we need to arrange data in ascending order to find Q_{1} and Q_{3} and avoid any duplicates.
23,24,25,26,27,28,29,30,34,35,36

Calculation of Q_{1} and Q_{3} can be done as follows,

هنا نجد قيمة $\begin{gathered} \mathrm{Q}_{1}=\frac{1}{4}(\mathrm{~N}+1)^{\mathrm{th}} \text { position } \\ \mathrm{Q}_{1}=\frac{1}{4}(11+1)^{\mathrm{th}} \\ \mathrm{Q}_{1}=\frac{1}{4}(12)^{\mathrm{th}} \\ \mathrm{Q}_{1}=\frac{12}{4}=3^{\text {th }} \text { position } \\ \mathrm{Q}_{1}=25 \end{gathered}$	هنا نجد قيمة Q_{3} $\begin{gathered} \mathrm{Q}_{3}=\frac{3}{4}(\mathrm{~N}+1)^{\mathrm{th}} \text { position } \\ \mathrm{Q}_{3}=\frac{3}{4}(11+1)^{\mathrm{th}} \\ \mathrm{Q}_{3}=\frac{3}{4}(12)^{\mathrm{th}} \\ \mathrm{Q}_{3}=\frac{36}{4}=9^{\text {th }} \text { position } \\ \mathrm{Q}_{3}=34 \end{gathered}$

QuartileDeviation $(\mathrm{QD})=\frac{\mathrm{Q}_{3}-\mathrm{Q}_{1}}{2}=\frac{34-25}{2}=\frac{9}{2}=4.2$
Coefficient of QuartileDeviation $(C Q D)=\frac{Q_{3}-Q_{1}}{Q_{3}+Q_{1}}=\frac{34-25}{34+25}=\frac{9}{59}=0.1525$

Example 2

Consider a data set of the following numbers:

$$
22,12,14,7,18,16,11,15,12
$$

You are required to calculate the Quartile Deviation.
Solution:
First, we need to arrange data in ascending order to find Q3 and Q1 and avoid any duplicates.

$$
7,11,12,13,14,15,16,18,22
$$

Calculation of Q_{1} and Q_{3} can be done as follows,

	$\mathrm{Q}_{1}=\frac{1}{4}(\mathrm{~N}+1)^{\text {th }}$ position		$\mathrm{Q}_{3}=\frac{3}{4}(\mathrm{~N}+1)^{\text {th }}$ position
	$\mathrm{Q}_{1}=\frac{1}{4}(9+1)^{\text {th }}$		$\mathrm{Q}_{3}=\frac{3}{4}(9+1)^{\text {th }}$
Q_{1}	$\mathrm{Q}_{1}=\frac{1}{4}(10)^{\text {th }}$	Q_{3}	$\mathrm{Q}_{3}=\frac{3}{4}(10)^{\text {th }}$
	$\mathrm{Q}_{1}=\frac{10}{4}=2.5^{\text {th }}$ position		$\mathrm{Q}_{3}=\frac{30}{4}=7.5^{\text {th }}$ position

Calculation of quartile deviation can be done as follows,

- Q_{1} is an average of 2-position, which is 11 and the difference between 3 and 2 position and multiply in 0.5 , which is

$$
\mathrm{Q}_{1}=(12-11) * 0.5=11.50
$$

- Q_{3} is the 7-position term and product of 0.5 , and the difference between the 8 and 7 position, which is

$$
\mathrm{Q}_{3}=(18-16) * 0.5=17
$$

QuartileDeviation $(\mathrm{QD})=\frac{\mathrm{Q}_{3}-\mathrm{Q}_{1}}{2}=\frac{17-11.50}{2}=\frac{5.5}{2}=2.75$

