Al-Mustaqbal University College
Department of Medical Instrumentation Techniques Engineering Class: Third
Subject: Variables and assignment statement, logical operator part (2) Lecturer: Dr. Ali Kareem Abbas

Lecture: (4)

Basic Mathematical Functions

Command	Description
abs(x)	Absolute value $\|x\|$ (magnitude of complex number)
sign(x)	Sign, returns -1 if $x<0,0$ if $x=0,1$ if $x>0$
ceil(x)	Round towards plus infinity.
$\operatorname{conj}(\mathrm{x})$	Complex conjugate.
fix (x)	Round towards zero.
floor(x)	Round towards minus infinity.
$\operatorname{rem}(\mathrm{x}, \mathrm{y})$	Remainder of x / y. For example, rem(100,21) is 16. Also called the modulus function. $\{r=x-y . * f i x(x . / y)\}$
$\bmod (x)$	Modulus after division.
imag(x)	Complex imaginary part.
$\operatorname{real(x)}$	Complex real part.
$\operatorname{round}(x)$	Round towards nearest integer.

Example: abs(x)

$$
\begin{aligned}
& \gg \mathrm{x}=\left[\begin{array}{lllll}
1.3 & -3.56 & 8.23 & -5 & -0.01
\end{array}\right] ; \\
& \gg \mathrm{y}=\operatorname{abs}(\mathrm{x}) \\
& \text { ans }=
\end{aligned}
$$

$$
\begin{array}{lllll}
1.3 & 3.56 & 8.23 & 5 & 0.01
\end{array}
$$

Al-Mustaqbal University College
Department of Medical Instrumentation Techniques Engineering Class: Third
Subject: Variables and assignment statement, logical operator part (2) Lecturer: Dr. Ali Kareem Abbas

Lecture: (4)
Example: $\operatorname{sign}(\mathrm{x})$
$\gg \mathrm{V}=\left[\begin{array}{lllll}-11 & 0 & 1.5 & \mathrm{Inf} & \mathrm{NaN}\end{array}\right] ;$
>> $\operatorname{sign}(\mathrm{V})$
ans =
$\begin{array}{lllll}-1 & 0 & 1 & 1 & \mathrm{NaN}\end{array}$
Example: ceil(x)

$$
\left.\begin{array}{l}
\gg \mathrm{X}=\left[\begin{array}{lll}
-1.9 & -0.2 & 3.4 ; \\
\gg & 5.6 & 7
\end{array} 2.4+3.6 \mathrm{i}\right.
\end{array}\right] ;
$$

Example: conj(x)
$\gg \mathrm{Z}=\left[\begin{array}{lll}0-1 \mathrm{i} & 2+1 \mathrm{i} ; 4+2 \mathrm{i} & 0-2 \mathrm{i}\end{array}\right]$;
>> $\mathrm{Zc}=\operatorname{conj}(\mathrm{Z})$
$\mathrm{Zc}=$

$$
\begin{array}{cc}
0.0000+1.0000 \mathrm{i} & 2.0000-1.0000 \mathrm{i} \\
4.0000-2.0000 \mathrm{i} & 0.0000+2.0000 \mathrm{i}
\end{array}
$$

Example: fix(x)

```
>> X = [-1.9 -3.4; 1.6 2.5; -4.5 4.5];
>> Y = fix(X)
Y =
    -1 -3
    1 2
    -4 4
```

Al-Mustaqbal University College
Department of Medical Instrumentation Techniques Engineering Class: Third
Subject: Variables and assignment statement, logical operator part (2)

Lecturer: Dr. Ali Kareem Abbas

Lecture: (4)

Example: floor(x)

$$
\left.\begin{array}{l}
\text { >> X }=\left[\begin{array}{llll}
-1.9 & -0.2 & 3.4 ; 5.6 & 7.0
\end{array} \quad 2.4+3.6 \mathrm{i}\right.
\end{array}\right] ;
$$

Example: rem(x,y)

$$
\begin{aligned}
& \text { >> } \mathrm{a}=1: 5 ; \\
& \gg \mathrm{b}=3 ; \\
& \gg \mathrm{r}=\operatorname{rem}(\mathrm{a}, \mathrm{~b}) \\
& \mathrm{r}= \\
& \begin{array}{rlllll}
1 & 2 & 0 & 1 & 2
\end{array}
\end{aligned}
$$

Example: $\operatorname{imag}(x)$

```
>> [imag(2 + 3/2*i), imag(sin(5*i)), imag(2*exp(1+i))]
ans =
    1.5000 74.2032 4.5747
```


Example: real(x)

$\gg[\operatorname{real}(2+3 / 2 * \mathrm{i}), \quad \operatorname{real}(\sin (5 * \mathrm{i})), \quad \operatorname{real}(2 * \exp (1+\mathrm{i}))]$ ans =
$2.0000 \quad 0 \quad 2.9374$
Example: round(x)
>> $\mathrm{X}=\left[\begin{array}{ll}2.11 & 3.5 ; ~-3.5 ~ 0.78\end{array}\right] ;$
$\gg \mathrm{Y}=\operatorname{round}(\mathrm{X})$

Relational and Logical Functions

Function	Description
any(x)	Returns a scalar that is 1 (true) if any element in the vector x is nonzero; otherwise, the scalar is 0 (false). Returns a row vector containing a 1 (true) in each element for which any element of the corresponding column of matrix x is nonzero, and a 0 (false) otherwise.
all(x)	Returns a scalar that is 1 (true) if all elements in the vector x are nonzero; otherwise, the scalar is 0 (false). Returns a row vector containing a 1 (true) in each element for which all elements of the corresponding column of matrix x are nonzero, and a 0 (false) otherwise.
find(x)	Returns a vector containing the indices of the nonzero elements of a vector x. Returns a vector containing the indices of the nonzero.
isnan(x)	Returns an array with ones where the elements of x are NaN and zeroswhere they are not.
isfinite(x)	Returns an array with ones where the elements of x are finite and zeros where they are not. For example, isfinite([pi NaN Inf -Inf]) is [1 0 0 0].
isinf(x)	Returns an array with ones where the elements of x are +Inf or -Inf and zeros where they are not.
isempty(x)	Returns 1 if x is an empty array and 0 otherwise.

Al-Mustaqbal University College
Department of Medical Instrumentation Techniques Engineering Class: Third
Subject: Variables and assignment statement, logical operator part (2)

Lecturer: Dr. Ali Kareem Abbas

Lecture: (4)
Example: any(x)

```
>> \(A=\left[\begin{array}{lllllll}0 & 0 & 3 ; 0 & 0 & 3 ; 0 & 0 & 3\end{array}\right]\)
\(\gg B=\operatorname{any}(A)\)
\(\mathrm{B}=\)
    \(1 \times 3\) logical array
    \(0 \quad 0 \quad 1\)
```

Example: all(x)
$\gg \mathrm{B}=\operatorname{all}(\mathrm{A})$
$\mathrm{B}=$
1×3 logical array
$0 \quad 0 \quad 1$
Example: isnan(x)
>> $\mathrm{A}=0 . /\left[\begin{array}{lllll}-2 & -1 & 0 & 1 & 2\end{array}\right]$
$\mathrm{A}=$
$0 \quad 0 \quad \mathrm{NaN} \quad 0 \quad 0$
>> $\mathrm{TF}=\operatorname{isnan}(\mathrm{A})$
$\mathrm{TF}=$
1×5 logical array
$\begin{array}{lllll}0 & 0 & 1 & 0 & 0\end{array}$
Example: isfinite(x)
>> A = 1./[-2 $\left.-1 \begin{array}{llll}0 & 1 & 2\end{array}\right]$
$\mathrm{A}=$
$-0.5000-1.0000 \quad$ Inf $1.0000 \quad 0.5000$

Al-Mustaqbal University College
Department of Medical Instrumentation Techniques Engineering Class: Third
Subject: Variables and assignment statement, logical operator part (2)
Lecturer: Dr. Ali Kareem Abbas
Lecture: (4)
$\gg \mathrm{TF}=$ isfinite (A)
$\mathrm{TF}=$
1×5 logical array
$\begin{array}{lllll}1 & 1 & 0 & 1 & 1\end{array}$
Example: $\operatorname{isinf}(\mathrm{x})$
$\gg \mathrm{TF}=\operatorname{isinf}(\mathrm{A})$
$\mathrm{TF}=$
1×5 logical array
$0 \quad 0 \quad 1 \quad 0 \quad 0$
Example 1: isempty(x)
>> $\mathrm{X}=$ zeros $(3,3)$
IE = isempty (X)
$\mathrm{X}=$
$0 \quad 0 \quad 0$
$0 \quad 0 \quad 0$
$0 \quad 0 \quad 0$
IE =
logical
0
Example 2: isempty(x)
$\gg X=\operatorname{rand}(0,4)$
IE = isempty (X)
$\mathrm{X}=$
0×4 empty double matrix
$\mathrm{IE}=$
logical
1

