

#### **Basic Mathematical Functions**

| Command  | Description                                                                                                      |
|----------|------------------------------------------------------------------------------------------------------------------|
| abs(x)   | Absolute value $ x $ (magnitude of complex number)                                                               |
| sign(x)  | Sign, returns $-1$ if $x < 0, 0$ if $x = 0, 1$ if $x > 0$                                                        |
| ceil(x)  | Round towards plus infinity.                                                                                     |
| conj(x)  | Complex conjugate.                                                                                               |
| fix(x)   | Round towards zero.                                                                                              |
| floor(x) | Round towards minus infinity.                                                                                    |
| rem(x,y) | Remainder of $x/y$ . For example, rem(100,21) is 16. Also called the modulus function. { $r = x- y.*fix(x./y)$ } |
| mod(x)   | Modulus after division.                                                                                          |
| imag(x)  | Complex imaginary part.                                                                                          |
| real(x)  | Complex real part.                                                                                               |
| round(x) | Round towards nearest integer.                                                                                   |

#### **Example:** abs(x)

>> x = [1.3 -3.56 8.23 -5 -0.01];

>> y = abs(x)

ans =

1.3 3.56 8.23 5 0.01



## **Example:** sign(x)

>> V = [-11 0 1.5 Inf NaN]; >> sign(V) ans = -1 0 1 1 NaN Example: ceil(x) >> X = [-1.9 -0.2 3.4; 5.6 7 2.4+3.6i]; >> Y = ceil(X) Y =

 $\begin{array}{rrrr} -1.0000 + 0.0000i & 0.0000 + 0.0000i & 4.0000 + 0.0000i \\ 6.0000 + 0.0000i & 7.0000 + 0.0000i & 3.0000 + 4.0000i \end{array}$ 

# **Example:** conj(x)

>>  $Z = [0-1i \ 2+1i; 4+2i \ 0-2i];$ >> Zc = conj(Z)Zc=

0.0000 + 1.0000i 2.0000 - 1.0000i 4.0000 - 2.0000i 0.0000 + 2.0000i

#### **Example:** fix(x)

>> X = [-1.9 -3.4; 1.6 2.5; -4.5 4.5]; >> Y = fix(X) Y = -1 -3 1 2 -4 4





3

# **Example:** floor(x)

 $>> X = [-1.9 \quad -0.2 \quad 3.4; 5.6 \quad 7.0 \quad 2.4+3.6i];$ >> Y = floor(X)Y =-2.0000 + 0.0000i -1.0000 + 0.0000i 3.0000 + 0.0000i5.0000 + 0.0000i7.0000 + 0.0000i 2.0000 + 3.0000i**Example:** rem(x,y) >> a = 1:5; >> b = 3;>> r = rem(a,b) r =1 2 0 1 2 **Example:** imag(x) >> [imag(2 + 3/2\*i), imag(sin(5\*i)), imag(2\*exp(1 + i))]ans =1.5000 74.2032 4.5747 **Example:** real(x) >> [real(2 + 3/2\*i), real(sin(5\*i)), real(2\*exp(1 + i))] ans =2.0000 0 2.9374 **Example:** round(x)

>> X = [2.11 3.5; -3.5 0.78]; >> Y = round(X)



- Y = 2
  - 2 4
  - -4 1

# **Relational and Logical Functions**

| Function    | Description                                                                                                                                                                                                                                                                                 |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| any(x)      | Returns a scalar that is 1 (true) if <i>any</i> element in the vector x is nonzero; otherwise, the scalar is 0 (false). Returns a row vector containing a 1 (true) in each element for which any element of the corresponding column of matrix x is nonzero, and a 0 (false) otherwise.     |
| all(x)      | Returns a scalar that is 1 (true) if <i>all</i> elements in the vector x are nonzero; otherwise, the scalar is 0 (false). Returns a row vector containing a 1 (true) in each element for which all elements of the corresponding column of matrix x are nonzero, and a 0 (false) otherwise. |
| find(x)     | Returns a vector containing the indices of the nonzero elements of a vector x. Returns a vector containing the indices of the nonzero.                                                                                                                                                      |
| isnan(x)    | Returns an array with ones where the elements of x are NaN and zeroswhere they are not.                                                                                                                                                                                                     |
| isfinite(x) | Returns an array with ones where the elements of x are finite and zeros where they are not. For example, isfinite([pi NaN Inf -Inf]) is [1 0 0 0].                                                                                                                                          |
| isinf(x)    | Returns an array with ones where the elements of x are +Inf or –Inf and zeros where they are not.                                                                                                                                                                                           |
| isempty(x)  | Returns 1 if x is an empty array and 0 otherwise.                                                                                                                                                                                                                                           |





### **Example:** any(x)

 $>> A = [0 \ 0 \ 3; 0 \ 0 \ 3; 0 \ 0 \ 3]$ >> B = any(A)B =1×3 logical array 0 0 1 **Example:** all(x) >> B = all(A)B =1×3 logical array 0 0 1 **Example:** isnan(x) >> A = 0./[-2 -1 0 1 2]A =0 NaN 0 0 0 >> TF = isnan(A)TF = $1 \times 5$  logical array 0 0 0 0 1 **Example**: isfinite(x) >> A = 1./[-2 -1 0 1 2] A =-0.5000 -1.0000 Inf 1.0000 0.5000







>> TF = isfinite(A) TF =1×5 logical array 1 0 1 1 1 **Example**: isinf(x) >> TF = isinf(A)TF =1×5 logical array 0 0 1 0 0 **Example 1**: isempty(x) >> X = zeros(3, 3)IE = isempty (X)X = 0 0 0 0 0 0 0 0 0 IE =logical 0 **Example 2**: isempty(x) >> X = rand(0, 4)IE = isempty (X)X = 0×4 empty double matrix IE =logical 1