

Variables and assignment statement

Variable names can be assigned to represent numerical values in Matlab. The rules for these variable names are:

Must start with a letter

- May consist only of the letters a-z, digits 0-9, and the underscore character (_)
- May be as long as you would like, but Matlab only recognizes the first 31 characters

• Is case sensitive: items, Items, itEms, and ITEMS are all different variable names.

Assignment statement: Matlab command of the form:

- variable = number
- variable = expression

Example: *Expressions with variables*

Basic Mathematical Functions

MATLAB supports many mathematical functions, most of which are used in the same way you write them mathematically.

Command	Description
abs(x)	Absolute value $ x $ (magnitude of complex number)
sign(x)	Sign, returns -1 if $x < 0, 0$ if $x = 0, 1$ if $x > 0$
ceil(x)	Round towards plus infinity.
conj(x)	Complex conjugate.
fix(x)	Round towards zero.
floor(x)	Round towards minus infinity.
rem(x,y)	Remainder of x/y . For example, rem(100,21) is 16. Also called the modulus function. { $r = x- y.*fix(x./y)$ }
mod(x)	Modulus after division.
imag(x)	Complex imaginary part.
real(x)	Complex real part.
round(x)	Round towards nearest integer.

Writing arithmetic expressions

EX1: Consider the equation to convert from temperature in Fahrenheit (T_F) to temperature in Celsius (T_C) :

$$T_C = \frac{5}{9}(T_F - 32)$$

EX2: Use multiple statements Consider the equation:

$$H(s) = \frac{s^2 + 4s + 13}{s^3 - 2s^2 + 4s + 5}$$

Matlab commands:

>> H = numerator/denominator;

H.W2: Solving for quadratic roots

Solve for $s: 2s^2 + 10s + 12 = 0$

Analysis: Derive and apply the quadratic equation by first expressing the quadratic polynomial in parametric form

 $as^2 + bs + c = 0$

Logical operator

A logical operation is a special symbol or word that connects two or more phrases of information. It is often used to test whether a certain relationship between the phrases is true or false.

In computing, logical operations are necessary because they model the way that information flows through electrical circuits, such as those inside a CPU. These types of operations are called Boolean operations.

The question or condition is defined using relational and logical operators.

4

Relational Operators

Relational operators perform element-by-element comparisons between two arrays. They return a logical array of the same size, with elements set to logical 1 (true) where the relation is true, and elements set to logical 0 (false) where it is not.

Relational Operator	Description
<	less than
<=	less than or equal
>	greater than
>=	greater than or equal
==	equal
~=	not equal

EX1:

>> tf2 = A > B tf2 =0 0 0 0 1 1 1 1 1 1 >> tf3 = (A==B) tf3 =0 0 0 1 0 0 0 0 0 >> tf4 = B-(A>2) tf4 =7 6 4 3 2 1 0 -1 -2

EX2: If one of the operands is a scalar and the other a matrix, the scalar expands to the size of the matrix. For example, the two pairs of statements:

>> X = 5; or X = 5*ones(3,3);

>>X >= [1 2 3; 4 5 6; 7 8 10]

produce the same result:

ans =

1	1	1
1	1	0
0	0	0

Logical Operations

Logical, or Boolean, operators: a logical operand that produces a logical result. Logical operators provide a way to combine or reject relational expressions.

Inputs		and	or	not	xor
A	В	A & B	A B	~A	xor(A,B)
0	0	0	0	1	0
0	1	0	1	1	1
1	0	0	1	0	1
1	1	1	1	0	0

EX1:

EX2: This example shows the logical OR of the elements in the vector u with the corresponding elements in the vector v:

>> u = [0 0 1 1 0 1];

 $>> v = [0 \ 1 \ 1 \ 0 \ 0 \ 1];$

 $>> u \mid v$

ans =

 $0 \ 1 \ 1 \ 1 \ 0 \ 1$

Relational and Logical Functions

Function	Description
any(x)	Returns a scalar that is 1 (true) if <i>any</i> element in the vector x is nonzero; otherwise, the scalar is 0 (false). Returns a row vector containing a 1 (true) in each element for which any element of the corresponding column of matrix x is nonzero, and a 0 (false) otherwise.
all(x)	Returns a scalar that is 1 (true) if <i>all</i> elements in the vector x are nonzero; otherwise, the scalar is 0 (false). Returns a row vector containing a 1 (true) in each element for which all elements of the corresponding column of matrix x are nonzero, and a 0 (false) otherwise.
find(x)	Returns a vector containing the indices of the nonzero elements of a vector x. Returns a vector containing the indices of the nonzero.
isnan(x)	Returns an array with ones where the elements of x are NaN and zeroswhere they are not.
isfinite(x)	Returns an array with ones where the elements of x are finite and zeros where they are not. For example, $isfinite([pi NaN Inf -Inf])$ is $[1 \ 0 \ 0 \ 0]$.
isinf(x)	Returns an array with ones where the elements of x are $+Inf$ or $-Inf$ and zeros where they are not.
isempty(x)	Returns 1 if x is an empty array and 0 otherwise.