Al-Mustaqbal University College
Department of Medical Instrumentation Techniques Engineering Class: Third
Subject: Variables and assignment statement, logical operator.
Lecturer: Dr. Ali Kareem Abbas
Lecture: (4)

Variables and assignment statement

Variable names can be assigned to represent numerical values in Matlab. The rules for these variable names are:

Must start with a letter

- May consist only of the letters a-z, digits 0-9, and the underscore character (_)
- May be as long as you would like, but Matlab only recognizes the first 31 characters
- Is case sensitive: items, Items, itEms, and ITEMS are all different variable names.

Assignment statement: Matlab command of the form:

- variable $=$ number
- variable $=$ expression

Example: Expressions with variables
>> screws $=32$;
\gg bolts $=18$;
\gg rivets $=40$;
>> items = screws + bolts + rivets
items =
90
>> cost $=$ screws * $0.12+$ bolts * $0.18+$ rivets * 0.08
cost $=$
10.2800
>> average_cost $=$ cost/items
average_cost =
0.1142

Al-Mustaqbal University College
Department of Medical Instrumentation Techniques Engineering Class: Third
Subject: Variables and assignment statement, logical operator.
Lecturer: Dr. Ali Kareem Abbas

Lecture: (4)

Basic Mathematical Functions

MATLAB supports many mathematical functions, most of which are used in the same way you write them mathematically.

Command	Description
abs(x)	Absolute value $\|x\|$ (magnitude of complex number)
$\operatorname{sign}(\mathrm{x})$	Sign, returns -1 if $x<0,0$ if $x=0,1$ if $x>0$
ceil(x)	Round towards plus infinity.
$\operatorname{conj}(\mathrm{x})$	Complex conjugate.
fix(x)	Round towards zero.
floor(x)	Round towards minus infinity.
$\operatorname{rem}(\mathrm{x}, \mathrm{y})$	Remainder of x / y. For example, $\operatorname{rem}(100,21)$ is 16 . Also called the modulus function. $\{\mathrm{r}=\mathrm{x}-\mathrm{y} . * \mathrm{fix}(\mathrm{x} . / \mathrm{y})\}$
$\bmod (\mathrm{x})$	Modulus after division.
$\operatorname{imag}(\mathrm{x})$	Complex imaginary part.
$\operatorname{real}(\mathrm{x})$	Complex real part.
round(x)	Round towards nearest integer.

Writing arithmetic expressions

EX1: Consider the equation to convert from temperature in Fahrenheit $\left(T_{F}\right)$ to temperature in Celsius $\left(T_{C}\right)$:

$$
T_{C}=\frac{5}{9}\left(T_{F}-32\right)
$$

EX2: Use multiple statements
Consider the equation:

$$
H(s)=\frac{s^{2}+4 s+13}{s^{3}-2 s^{2}+4 s+5}
$$

Matlab commands:
>> $\mathrm{H}=$ numerator/denominator;
H.W2: Solving for quadratic roots

Solve for $s: 2 s^{2}+10 s+12=0$
Analysis: Derive and apply the quadratic equation by first expressing the quadratic polynomial in parametric form

$$
a s^{2}+b s+c=0
$$

Logical operator

A logical operation is a special symbol or word that connects two or more phrases of information. It is often used to test whether a certain relationship between the phrases is true or false.

In computing, logical operations are necessary because they model the way that information flows through electrical circuits, such as those inside a CPU. These types of operations are called Boolean operations.

The question or condition is defined using relational and logical operators.

Al-Mustaqbal University College
Department of Medical Instrumentation Techniques Engineering Class: Third
Subject: Variables and assignment statement, logical operator.
Lecturer: Dr. Ali Kareem Abbas

Lecture: (4)

Relational Operators

Relational operators perform element-by-element comparisons between two arrays. They return a logical array of the same size, with elements set to logical 1 (true) where the relation is true, and elements set to logical 0 (false) where it is not.

Relational Operator	Description
$<$	less than
$<=$	less than or equal
$>$	greater than
$>=$	greater than or equal
$==$	not equal
$\sim=$	

EX1:

>> $A=1: 9$
$\mathrm{A}=$
$\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$
$\gg B=8-\mathrm{A}$
$\mathrm{B}=$
$\begin{array}{lllllllll}7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & -1\end{array}$
\gg tf1 $=\mathrm{A}<=4$
tf1 =
$\begin{array}{lllllllll}1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0\end{array}$

```
\(\gg \mathrm{tf} 2=\mathrm{A}>\mathrm{B}\)
tf2 =
    \(\begin{array}{lllllllll}0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1\end{array}\)
\(\gg \mathrm{tf} 3=(\mathrm{A}==\mathrm{B})\)
tf3 =
    \(\begin{array}{lllllllll}0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\end{array}\)
\(\gg \mathrm{tf} 4=\mathrm{B}-(\mathrm{A}>2)\)
\(\mathrm{tf} 4=\)
    \(\begin{array}{lllllllll}7 & 6 & 4 & 3 & 2 & 1 & 0 & -1 & -2\end{array}\)
```

EX2: If one of the operands is a scalar and the other a matrix, the scalar expands to the size of the matrix. For example, the two pairs of statements:
$\gg X=5 ;$ or $X=5^{*} \operatorname{ones}(3,3)$;
$\gg X>=\left[\begin{array}{lllllll}1 & 2 & 3 ; & 4 & 5 & 6 ; 7 & 8 \\ 10\end{array}\right]$
produce the same result:

```
ans =
    1 1 1
    1 1 0
    0 0}
```


Logical Operations

Logical, or Boolean, operators: a logical operand that produces a logical result. Logical operators provide a way to combine or reject relational expressions.

Al-Mustaqbal University College
Department of Medical Instrumentation Techniques Engineering Class: Third
Subject: Variables and assignment statement, logical operator.
Lecturer: Dr. Ali Kareem Abbas
Lecture: (4)

Inputs		and	or	not	xor
A	B	A \& B	A \mid B	$\sim \mathrm{A}$	xor(A,B)
0	0	0	0	1	0
0	1	0	1	1	1
1	0	0	1	0	1
1	1	1	1	0	0

EX1:

$\gg \mathrm{A}=1: 9$
$\mathrm{A}=$
$\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$
$\gg \mathrm{tf} 1=\mathrm{A}>4$
$\mathrm{tf} 1=$

$$
\begin{array}{lllllllll}
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1
\end{array}
$$

$\gg t \mathrm{f} 2=\sim(\mathrm{A}>4)$
$\mathrm{tf} 2=$
$\begin{array}{lllllllll}1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0\end{array}$
$\gg \mathrm{tf} 3=(\mathrm{A}>2) \&(\mathrm{~A}<6)$
tf3 =

$$
\begin{array}{lllllllll}
0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0
\end{array}
$$

$\gg \mathrm{tf} 4=\operatorname{xor}((\mathrm{A}>2),(\mathrm{A}<6))$
tf4 =

$$
\begin{array}{lllllllll}
1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}
$$

EX2: This example shows the logical OR of the elements in the vector u with the corresponding elements in the vector v :
$\gg u=\left[\begin{array}{llllll}0 & 0 & 1 & 1 & 0 & 1\end{array}\right] ;$
$\gg v=\left[\begin{array}{llllll}0 & 1 & 1 & 0 & 0 & 1\end{array}\right] ;$
$\gg u \mid v$
ans $=$
$\begin{array}{llllll}0 & 1 & 1 & 1 & 0 & 1\end{array}$
Relational and Logical Functions

Function	Description
any(x)	Returns a scalar that is 1 (true) if any element in the vector x is nonzero; otherwise, the scalar is 0 (false). Returns a row vector containing a 1 (true) in each element for which any element of the corresponding column of matrix x is nonzero, and a 0 (false) otherwise.
all(x)	Returns a scalar that is 1 (true) if all elements in the vector x are nonzero; otherwise, the scalar is 0 (false). Returns a row vector containing a 1 (true) in each element for which all elements of the corresponding column of matrix x are nonzero, and a 0 (false) otherwise.
find(x)	Returns a vector containing the indices of the nonzero elements of a vector x. Returns a vector containing the indices of the nonzero.
isnan(x)	Returns an array with ones where the elements of x are NaN and zeroswhere they are not.
isfinite(x)	Returns an array with ones where the elements of x are finite and zeros where they are not. For example, isfinite([pi NaN Inf -Inf]) is [1 0 0 0].
isinf(x)	Returns an array with ones where the elements of x are + Inf or -Inf and zeros where they are not.
isempty(x)	Returns 1 if x is an empty array and 0 otherwise.

