ALMUSTAQBAL UNIVERSITY COLLEGE

Biomedical Engineering Department
Stage : Second year students
Subject : Chemistry 1 - Lecture 4
Lecturer: Assistant professor Dr. SADIQ . J. BAQIR

Methods of expressing concentrations:

Concentration represents the amount of dissolved substance (solute) per unit amount of solution, It can be expressed by :

1) Chemical units : equivalent mass - Molar mass(mole).
2) Physical units : mass - volume

1. Chemical Units:

The mole:

Is a unit for the amount of a chemical species, always associated with a chemical formula and represents Avogadro's number (6.022×10^{23}) of particles represented by that formula.

Molar Mass :Is the mass in grams of 1 mole of the substance ,it is calculated by summing the atomic masses of all the atoms appearing in a chemical formula .

$$
\text { Molar mass }(\text { M.wt })=\sum \text { atomic molar mass }
$$

Example :- The molar mass for formaldhyde $\mathrm{CH}_{2} \mathrm{O}$ is :
$M . w t_{\mathrm{CH}_{2} \mathrm{O}}=\sum(1$ mole carbon +2 mole hydrogen +1 mole oxygen $)$ atom
$M . w t_{C H_{2} O}=1 \times 12 g+2 \times 1.0 g+1 \times 16.0 g$

$$
=30.0 \mathrm{~g} / \text { mole of } \mathrm{CH}_{2} \mathrm{O}
$$

Example :- Molar mass of glucose $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$:
M.wt $c_{6} \mathrm{H}_{12} \mathrm{O}_{6}=\sum(6$ mole carbon +12 mole hydrogen +6 mole oxygen $)$
M. $w t_{C_{6} H_{12} O_{6}}=6 \times 12.0+12 \times 1.0+6 \times 16.0=180 \mathrm{~g} / \mathrm{mole}$

Important Relations:

M.wt is expressed by $\mathbf{g} / \mathbf{m o l e}$ or $\mathrm{mg} / \mathrm{mmole}$
$\operatorname{No.} \operatorname{moles}(\mathrm{n})=\frac{\mathrm{wt}(\mathrm{g})}{\mathrm{M} . \mathrm{wt}(\mathrm{g})}$
Mole $=10^{3} \mathrm{mmole} \quad, \quad \mathrm{m}$ mole $=\frac{1}{1000}$ mole $=10^{-3} \mathrm{~mole}$
Example: How many grams of $\mathrm{Na}^{+}(\mathrm{M} . \mathrm{wt}=22.99 \mathrm{~g} / \mathrm{mol})$ are contained in $(25.0 \mathrm{~g})$ of $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{M} . \mathrm{wt}=142.0 \mathrm{~g} / \mathrm{mol})$?

Solution:

$\underset{\text { 1mole }}{\mathrm{Na}_{2} \mathrm{SO}_{4}} \longrightarrow \underset{\text { 2mole }}{2 \mathrm{Na}^{+}}+\underset{\text { 1mole }}{\mathrm{SO}_{4}{ }^{2-}}$
$n_{\mathrm{Na}_{2} \mathrm{SO}_{4}}=\frac{\mathrm{Wt}_{(\mathrm{g})} \mathrm{Na}_{2} \mathrm{SO}_{4}}{\mathrm{M} . \mathrm{Wt}_{(\mathrm{g})} \mathrm{Na}_{2} \mathrm{SO}_{4}}=\frac{25.0}{142.0}=0.176$ moles of $\mathrm{Na}_{2} \mathrm{SO}_{4}$
$n_{\mathrm{Na}^{+}}=$Number of moles $\mathrm{Na}_{2} \mathrm{SO}_{4} \times 2=$ No. of moles of Na^{+}
$n_{\mathrm{Na}^{+}}=0.176 \times 2=0.352$ moles Na^{+}
Mass (g) $=$ No. of moles x molar $\operatorname{mass}(\mathrm{g} / \mathrm{mol})$
mass $\mathrm{Na}^{+}(\mathrm{g})=$ moles Na^{+}x $22.99(\mathrm{~g}) \mathrm{Na}^{+}$
mass $\mathrm{Na}^{+}(\mathrm{g})=0.352 \times 22.99=8.10(\mathrm{~g}) \mathrm{Na}^{+}$
e.g 1:

No. of moles of $\mathrm{Na}^{+}\left(n_{\mathrm{Na}^{+}}\right)$in NaCl is $=1 \mathrm{x} \mathrm{No}$.of moles of NaCl as
$\mathrm{NaCl} \longrightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}$
1 mole 1 mole
e.g 2:

No. of moles of $\mathrm{Na}^{+}\left(n_{\mathrm{Na}^{+}}\right)$in $\mathrm{Na}_{3} \mathrm{PO}_{4}$ is $=3 \times \mathrm{No}$. of moles of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ as
$\mathrm{Na}_{3} \mathrm{PO}_{4} \longrightarrow 3 \mathrm{Na}^{+}+\mathrm{PO}_{4}{ }^{3-}$
1 mole 3 mole
Exercise: How many grams of $\mathrm{Na}+(22.99 \mathrm{~g} / \mathrm{mol})$ are contained in
25.0 g of $\mathrm{Na}_{3} \mathrm{PO}_{4}(164 \mathrm{~g} / \mathrm{mol})$?

Exercise :

1. No. of moles of $\mathrm{K}^{+}\left(n_{\mathrm{k}^{+}}\right)$in $\mathbf{K}_{2} \mathrm{SO}_{4}=$?
2. No. of moles of $\mathrm{K}^{+}\left(n_{\mathrm{k}^{+}}\right)$in $\mathrm{KNO}_{3}=$?
3. No. of moles of $\mathrm{Mg}^{2+}\left(n_{\mathrm{Mg}^{2+}}\right)$ in $\mathrm{MgSO}_{4}=$?
4. No. of moles of $\mathrm{Fe}^{3+}\left(n_{\mathrm{Fe} 3+}\right)$ in $\mathrm{FeCl}_{3}=$?
5. No. of moles of $\mathrm{Cl}^{-}\left(n_{\mathrm{Cl}-}\right)$ in $\mathrm{FeCl}_{3}=$?

Molar concentration (M):

Molarity (M): Number of moles of solute per liter of solution
or
number of \mathbf{m} moles of solute per milliter of solution.

$$
\operatorname{Molarity}(M)=\frac{\text { number of moles of solute }}{\text { volume of solution(liter) }}
$$

Or

$$
\operatorname{Molarity}(\mathbf{M})=\frac{\text { number of mmole of solute }}{\text { volume of solution }(\mathrm{mL})}
$$

Example:

What is $\left(\mathrm{C}_{\mathrm{NaCl}}\right)$ the concentration of $\mathrm{NaCl}(58.5 \mathrm{~g} / \mathrm{mol})$ in grams per milliliter $(\mathrm{g} / \mathrm{mL})$ for its 0.25 M aqueous solution?

Solution:
$0.25 \mathrm{M}=0.25 \mathrm{~mol} / \mathrm{L} \equiv 0.25 \mathrm{mmol} / \mathrm{mL}=0.25 \times 10^{-3} \mathrm{~mole} / \mathrm{mL}$
$\mathrm{C}_{\mathrm{NaCl}}$ in $(\mathrm{g} / \mathrm{mL})=0.25 \times 10^{-3} \mathrm{~mole} / \mathrm{mL} \times$ M.wt $(\mathrm{g} / \mathrm{mol})=\mathrm{g} / \mathrm{mL}$
$\mathrm{C}_{\mathrm{NaCl}}$ in $(\mathrm{g} / \mathrm{mL})=0.25 \times 10^{-3} \mathrm{~mole} / \mathrm{mL} \times 58.5 \mathrm{~g} / \mathrm{mol}=0.0146 \mathrm{~g} / \mathrm{mL}$
Example :
Calculate $\left(\mathbf{C}_{\kappa_{+}}\right)$the concentration of potassium ion ($39.1 \mathrm{~g} / \mathrm{mol}$) in grams per liter for a 0.3 M aqueous solution of KCl (potassium chloride).

Solution:
$\mathrm{KCl} \rightarrow \mathrm{K}^{+}+\mathrm{Cl}^{-}$
$0.3 \mathrm{M} \mathrm{KCl}=0.3 \mathrm{~mol} / \mathrm{L} \mathrm{KCl}=0.3 \mathrm{~mol} / \mathrm{L} \mathrm{K}^{+}$
Each mol of $\mathrm{K}^{+}=39.1 \mathrm{~g}=$ M.wt
Then $\mathrm{C}_{\mathrm{K}+}$ in $\mathrm{g} /$ Liter $=\mathbf{0 . 3} \mathbf{~ m o l} /$ liter $\times 39.1 \mathrm{~g} / \mathrm{mol}=11.7 \mathrm{~g} /$ liter
Molarity(M) Calculations:
$\operatorname{Molarity}(\mathbf{M})=\frac{\text { no.of moles }}{\text { volume }(\mathrm{L})}=\frac{\frac{\left.\mathrm{wt}_{(\mathrm{g}}\right)}{M}}{\mathrm{~V}_{\mathrm{L}}}$
$\operatorname{Molarity}(\mathbf{M})=\frac{\mathbf{w t}_{(\mathrm{g})}}{\mathrm{M}_{\mathrm{wt}} \mathrm{V}_{\mathrm{L}}}$
$\left(V_{L}=\frac{V_{m L}}{1000}\right)$
$\operatorname{Molarity}(M)=\frac{\mathrm{wt}_{(\mathrm{g})}}{\operatorname{M.wt} \times \frac{\mathrm{VmL}}{1000}}$

$$
\operatorname{Molarity}(M)=\frac{\mathbf{w t}_{(\mathrm{g})} \times 1000}{M . \mathrm{wt} \mathrm{x} V_{\mathrm{mL}}}
$$

Example: Calculate the molar concentration of KNO_{3} aqueous solution that contains (2.02 g) of $\mathrm{KNO}_{3}(\mathrm{M} . \mathrm{wt}=101 \mathrm{~g} / \mathrm{mole})$ in $(\mathbf{2 . 0} \mathrm{L})$ of solution.

Solution:
$\operatorname{Molarity}(M)=\frac{\mathrm{wt}_{(\mathrm{g})}}{\mathrm{M} . \mathrm{wt}_{\mathrm{x}} \mathrm{V}_{\mathrm{L}}}=\frac{2.02(\mathrm{~g})}{101 \times 2.0 \mathrm{~L}}=0.10 \mathrm{M}$
or
$\operatorname{Molarity}(M)=\frac{\mathrm{wt}_{(\mathrm{g})} \times 1000}{\mathrm{M} . \mathrm{wt} \times \mathrm{V}_{\mathrm{mL}}}=\frac{2.02_{(\mathrm{g})} \times 1000}{101 \times 2000 \mathrm{~mL}}=0.10 \mathrm{M}$

Preaparation of molar solutions

Molarity represents the number of moles of solute in one liter of solution or number of mmole in one mililiter .
e.g: a sulfuric acid($98 \mathrm{~g} / \mathrm{mol}$) solution that has an analytical concentration of (1.0 M) can be prepared by dissolving (1.0 mole) or $(98 \mathrm{~g})$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in water and dilution to exactly (1.0 L). \{ Molarity $\left.(\mathrm{M})=\frac{1 \text { mole }}{1 L}=1 \mathrm{M}\right\}$

Example: Describe the preparation of (2.00 liter) of $(\mathbf{0} .18 \mathrm{M})$ aqueous solution of $\mathbf{B a C l}_{2}$ from solid $\mathbf{B a C l}_{2} .2 \mathrm{H}_{2} \mathrm{O}$ ($\mathbf{2 4 4 . 3 \mathrm { gm } / \mathrm { mole } \text {) . }}$

Solution:
$\mathrm{BaCl}_{2} \mathbf{2} \mathbf{H}_{2} \mathrm{O} \rightarrow \mathrm{BaCl}_{\mathbf{2}}+\mathbf{2} \mathbf{H}_{\mathbf{2}} \mathrm{O}$
1mole 1mole 2mole
Each (1mole $\mathrm{BaCl}_{2} \mathbf{2} \mathbf{2 H}_{2} \mathbf{O}$) gives (1 mole BaCl_{2}).

As Molarity $(M)=\frac{\text { No.of moles }}{\text { volume }(\mathrm{L})}$
No. moles = molarity $M \times$ volume (L)
for 2 liter of $0.18 \mathrm{M} \mathrm{BaCl} \mathbf{2}_{2}$ solution we have
No. moles BaCl_{2} in Solution $=0.18$ mole $\frac{\mathrm{BaCl}_{2}}{\mathrm{~L}} \times 2.00 \mathrm{~L}=0.36 \mathrm{~mole}\left(\mathrm{BaCl}_{2}\right)$
Then No .moles $\mathrm{BaCl}_{2} .2 \mathbf{H}_{\mathbf{2}} \mathrm{O}$ needed $=$ No. moles $\mathbf{B a C l}_{\mathbf{2}}=\mathbf{0 . 3 6}$ moles
Mass (g) = No.of moles x molar mass ($\mathrm{g} / \mathrm{mol}$)
The mass of $\left(\mathrm{BaCl}_{2} . \mathbf{2 H}_{2} \mathrm{O}\right)=0.36 \mathrm{~mole} \times 244.3 \mathrm{gm} / \mathrm{mol}=87.95 \mathrm{gm} \mathrm{BaCl} 2.2 \mathrm{H}_{2} \mathrm{O}$
The solution is prepared by dissolving 87.95 gm of $\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$ in water and complete the volume to 2.00 L

Example:

Describe the preparation of 500 mL of $\mathbf{0 . 0 7 4 0} \mathbf{M ~ C l}^{-}$solution from solid $\mathrm{BaCl}_{2}(\mathbf{2 0 8} \mathrm{~g} / \mathrm{mol})$.

Solution:

$\mathbf{B a C l}_{2} \rightarrow \quad \mathrm{Ba}^{2+}+2 \mathrm{Cl}^{-}$
1 mole 2 moles
No. of moles $=$ Molarity $(\mathbf{m o l} /$ liter $) \mathbf{x}$ Volume (Liters)
$\mathrm{V}_{\mathrm{L}}=\frac{\mathrm{V}_{\mathrm{mL}}}{1000}=\frac{500}{1000}=0.5 \mathrm{~L}$
moles $\mathrm{Cl}^{-}=0.0740 \mathrm{~mol} \mathrm{Cl}^{-} / \mathrm{L} \times 0.5 \mathrm{~L}=0.037$ moles Cl^{-}
No .moles $\mathbf{B a C l}_{2}$ needed $=\frac{1}{2}\left(\mathbf{N o .}\right.$ of moles of $\left.\mathrm{Cl}^{-}\right)$
No .moles BaCl_{2} needed $=\frac{0.037}{2}=\mathbf{0 . 0 1 8 5} \mathbf{~ m o l}$
mass $\mathrm{BaCl}_{2}=$ moles $\mathrm{BaCl}_{\mathbf{2}} \mathbf{x} \mathbf{M w t}$ (208)
mass $\mathrm{BaCl}_{2}=\mathbf{0 . 0 1 8 5} \times 208=3.848 \mathrm{~g}$

Then the required solution is prepared by dissolving 3.848 g of $\mathbf{B a C l}_{2}$ in water and dilute to $0.500 \mathrm{~L}(500 \mathrm{~mL})$.

Example:
Calculate the number of molecules (particles) of $\mathbf{N a C l}(58.5 \mathrm{~g} / \mathrm{mol})$ present in 1liter of 0.1 M solution.
Answer:
Each 1 mole contains Avogadro's number (6.022×10^{23}) of molecules then
No. of moles $=\operatorname{molarity}(\mathrm{M}) \times \mathrm{V}($ liter $)=0.1 \times 1=0.1$ mole

No. of moles $=\frac{\text { No.of molecules }}{6.02 \times 10^{23}}$
No. of molecules $=$ No. of moles $\times 6.02 \times 10^{23}=0.1 \times 6.02 \times 10^{23}$
No. of molecules $=6.02 \times 10^{22}$ molecules

Exercises:

1.Describe the preparation of 500 mL of $0.0740 \mathrm{M} \mathrm{Cl}^{-}$aqueous solution from solid $\mathrm{CaCl}_{2} \mathbf{2} \mathrm{HH}_{2} \mathrm{O}$ ($\mathbf{1 4 7} \mathrm{g} / \mathrm{mol}$).
2.Calculate the weight in grams of solid $\mathrm{K}_{2} \mathrm{SO}_{4}(174.26 \mathrm{~g} / \mathrm{mol})$ required to prepare 500 mL of 0.04 M aqueous solution of K^{+}.
3.Calculate the weight in grams of solid $\mathrm{NaCl}(58.5 \mathrm{~g} / \mathrm{mol})$ required to prepare 250 mL of $\mathbf{0 . 0 4} \mathrm{M}$ aqueous solution of Na^{+}.
4. Describe the preparation of 700 mL of $\mathbf{0 . 0 7 4 0} \mathrm{M} \mathrm{Cl}^{-}$solution from solid $\mathrm{BaCl}_{2}(\mathbf{2 0 8} \mathrm{~g} / \mathrm{mol})$.

