Relative frequency and percentage frequency

1- Frequency: It determines the number of observations falling into each category.

2- Relative frequency: It determines the proportion of observation in the particular class relative to the total observations.

This relative frequency of a particular observation or class limit is found by dividing the frequency (\mathbf{F}) by the number of observations (\mathbf{N}): that is, $(\mathbf{F} \div$ N).

Relative frequency $=$ frequency \div number of observations

3- Relative frequency distribution: is a tabular summary of a set of data showing the relative frequency for each class.

4- Percent frequency is the relative frequency multiplied by 100 The percentage frequency is found by multiplying each relative frequency value by 100 . Thus:

$$
\text { Percentage frequency }=\text { relative frequency } \times 100=\mathrm{f} \div \mathrm{n} \mathbf{x 1 0 0}
$$

Example1: Construct the Percentage frequency and relative frequency

 distribution for the following data:| 62 | 58 | 58 | 52 | 48 | 53 | 54 | 63 | 69 | 63 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 57 | 56 | 46 | 48 | 53 | 56 | 57 | 59 | 58 | 53 |
| 52 | 56 | 57 | 52 | 52 | 53 | 54 | 58 | 61 | 63 |

Sol:

1- Largest value $\left(\mathrm{X}_{\mathrm{L}}\right)=69$, Lowest value $\left(\mathrm{X}_{\mathrm{s}}\right)=46$
2- Total Range $(T R)=(69-46)+1=24$
$3-K=1+3.322 \log (30)=5.9 \sim 6($ Rounded off)
4-Class width $(\mathrm{L})=24 / 6=4$

Use 46 (minimum value) as first lower limit. Add the class width of 4 to get the lower limit of the next class

Upper limit $=46+4-1=50-1=49$

Class Interval	Frequency $(\mathbf{F i})$	Relative Frequency	Percentage Frequency	Midpoint (\mathbf{X})
$46-49$	3	$3 / 30=0.1$	$3 / 30 \times 100=10$	47.5
$50-53$	8	$8 / 30=0.27$	$8 / 30 \times 100=27$	51.5
$54-57$	8	$8 / 30=0.27$	$8 / 30 \times 100=27$	55.5
$58-61$	6	$6 / 30=0.2$	$6 / 30 \times 100=20$	59.5
$62-65$	4	$4 / 30=0.13$	$4 / 30 \times 100=13$	63.5
$66-69$	1	$1 / 30=0.03$	$1 / 30 \times 100=3$	67.5
Total	$\sum=30$	1	$\sum=100$	

Example 2:

Class Interval	Frequency $(\mathbf{F i})$	Relative Frequency	Percentage Frequency	Midpoint (\mathbf{X})
$10-12$	5	$5 / 20=0.25$	$0.25 \times 100=25$	11
$13-15$	6	$6 / 20=0.30$	$0.3 \times 100=30$	14
$16-18$	3	$3 / 20=0.15$	$0.15 \times 100=15$	17
$19-21$	5	$5 / 20=0.25$	$0.25 \times 100=25$	20
$22-24$	1	$1 / 20=0.05$	$0.05 \times 100=5$	23
Total	$\sum=20$	1	$\sum=100$	

>>>

Cumulative frequency distribution table

A cumulative frequency distribution table is a more detailed table. It looks almost the same as a frequency distribution table but it has added columns that give the cumulative frequency and the cumulative percentage of the results, as well.

Example1: Construct the Cumulative frequency distribution table

 for the following data:| 62 | 58 | 58 | 52 | 48 | 53 | 54 | 63 | 69 | 63 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 57 | 56 | 46 | 48 | 53 | 56 | 57 | 59 | 58 | 53 |

52	56	57	52	52	53	54	58	61	63

Sol:

1- Largest value $\left(\mathrm{X}_{\mathrm{L}}\right)=69$, Lowest value $\left(\mathrm{X}_{\mathrm{S}}\right)=46$
2- Total Range $(T R)=(69-46)+1=24$
$3-K=1+3.322 \log (30)=5.9 \sim 6$ (Rounded off)
4-Class width $(\mathrm{L})=24 / 6=4$
Use 46 (minimum value) as first lower limit. Add the class width of 4 to get the lower limit of the next class

Upper limit $=46+4-1=50-1=49$

Class Interval	Frequency (Fi)	Cumulative frequency	Cumulative percentage(\%)
46-49	3	$\rightarrow 3$	$3 / 30 \times 100=10$
50-53	8	$8+3=11$	$11 / 30 \times 100=37$
54-57	8	$\rightarrow 11+8=19$	$19 / 30 \times 100=63$
58-61	6	$19+6=25$	$25 / 30 \times 100=83$
62-65	4	$\rightarrow 25+4=29$	$29 / 30 \times 100=97$
66-69	1	$\rightarrow 29+1=30$	$30 / 30 \times 100=100$
Total	$\sum=30$		

Tables for Qualitative Data

Ex: A sample of 10 students were examined by certain teacher and the results of examination was as below:

1. good
2. very good
3. good
4. excellent
5. poor
6. very good
7. good
8. poor
9. excellent
10. poor

Sol:

Results	Frequency	Relative Frequency	Percentage Frequency $\boldsymbol{\%}$	Cumulative Frequency	Cumulative Frequency $\boldsymbol{\%}$
Poor	3	0.3	30	3	30
Good	3	0.3	30	6	60
Very good	2	0.2	20	8	80

Excellent	2	0.2	20	10	100
Total	10		100		

Cross Tabulation: is a tabular summary of data for two variables
Crosstabulation can be used when:

1) one variable is qualitative and the other is quantitative
2) both variables are qualitative, or
3) both variables are quantitative

The left and top margin labels define the classes for the two variables

Ex1:

Length	143	$\mathbf{1 4 6}$	153	140	155	154	157	148	149	152	146	144
Weight	55	52	57	59	65	57	$\mathbf{6 4}$	51	59	54	55	52

Sol:

Length: \quad Range $=(157-140)+1=18$, lower limit $=\mathrm{Xs}=140$
$\mathrm{K}=1+3.322 \log (12)=4.5 \sim 5$, Upper limit $=140+4-1=143$
Class width $=18 / 5=3.6 \sim 4$

Weight:

Range $=(65-51)+1=15$, lower limit $=\mathrm{Xs}=51$
Class width $=15 / 5=3$, Upper limit $=51+3-1=53$

Length	$51-53$	$54-56$	$57-59$	$60-62$	$63-65$	Total
$140-143$	-	1	1	-	-	2
$144-147$	2	1	-	-	-	3
$148-151$	1	-	1	-	-	2
$152-155$	-	1	2	-	1	4
$156-159$	-	-	-	-	1	1
Total	3	3	4	-	2	12

Ex2: A sample of 15 patients were examined and their age were recorded. Construct a cross tabulation for the variables type of refractive error and gender

Types of refractive error (R.E)	Age
Myopia	25
Hyperopia	42
Myopia	15
Myopia	24
Hyperopia	43
Astigmatism	17
Myopia	16
Astigmatism	18
Myopia	13
Hyperopia	46
Astigmatism	32
Myopia	16
Hyperopia	38
Astigmatism	10
Hyperopia	40

Sol:
Age: \quad Range $=(46-10)+1=37$
$\mathrm{K}=1+3.322 \log (15)=\sim 5$
Class width $=37 / 5=7.4 \sim 7$
Lower limit $=10$
Upper limit $=10+7-1=16\}$ first interval $=10-16$

R.E. Age	$10-16$	$17-23$	$24-30$	$31-37$	$38-44$	$45-55$
Myopia	4	-	2	-	-	-
Hyperopia	-	-	-	-	4	1
Astigmatism	1	2	-	1	-	-
Total	5	2	2	1	4	1

