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1.1 Velocity -Dependent Force

It often happens that the force acting on a particle is a function of the
particle’s velocity. This is true, for example, in the case of viscous resistance
exerted on a body moving through a fluid. In the case of fluid resistance, it

is found that, for low velocities, the resistance is approximately proportional
to the velocity, whereas, for higher velocities, the resistance is more nearly
proportional to the square of v. If there are no other forces acting, the dif-
ferential equation of motion can he expressed as

dy
m ———
dt
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A single integration yields { as a function of v

m dv
t = —— =
f Fo) '
We can omit the constant of integration, since its value depends only on the

choice of the time origin. Assuming that we can solve the above equation
for v, namely,

v = v(l)
then a second integration gives the position z as a funetion of {

= [v(t)dt = 2()




EXAMPLE

Suppose & block is projected with initial velocity % on & smooth horizontal
plane, but that there is air resistance proportional to »; that is, F(») = —c,
where ¢ 1s a constant of proportionality. (The z axis is along the direction
of motion.) The differential equation of motion is

—¢l = m@
o

which gives, upon integrating,

[l
w O ¢\l

We can easily solve for » as a function of ¢ by multiplying by —¢/m and taking
the exponent of both sides. The result 1s

y = yyectim

Thus the velocity decreases exponentially with time. A second integration

gives
t
T = / pectm df
0

_ Mt (1 — ¢im)
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We see, from the above equation, that the block never goes beyond the
limiting distance muvo/c.

1.2 Vertical Motion in a Resisting Medium.
Terminal Velocity

An object falling vertically through the air or through any fluid is subject
to viscous resistance. If the resistance is proportional to the first power of
v (the linear case), we can express this force as —cv regardless of the sign of »,
because the resistance is always opposite to the direction of motion. The
constant of proportionality ¢ depends on the size and shape of the object and
the viscosity of the fluid. ILet us take the x axis to be positive upward. The
differential equation of motion is then

dv
—fmg——cv=mzi—t

If g is a constant, then we have a velocity-dependent force, and we can

write
mdv f" m dv
F@wy  Joo —mg — cv
m mg + cv

— =1
c nmg+cvo

We can readily solve for v
o — — T (1”_2 " ,,o) etlm
c c

The exponential term drops to a negligible value after a sufficient time
(t > m/c), and the velocity approaches the limiting value —mg/c. The
limiting velocity of a falling body is called the terminal velocity; it is that
velocity at which the force of resistance is just equal and opposite to the
weight of the body so that the total force is zero. The magnitude of the
terminai velocity is called the terminal speed. The terminal speed of a falling
raindrop, for instance, is roughly 10 to 20 ft per sec, depending on the size.

Equation (3.33) expresses v as a function of ¢, so a second integration will
give x as a function of ¢:

¢ 2
x—xo=/(;v(t)dt= —%Qt+(ng+mv° (1 — e—=tim)
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Let us designate the terminal speed mg/c by v., and let us write = (which
we may call the characteristic time) for m/c. Equation (2.21) may then be
written in the more significant form

v = —v, + (v + vo)e t”




Thus, an object dropped from rest (v, = 0) will rcach a speed of 1 — e~! times
the terminal speed in a time =, (1 — e v, in a time 2r, and so on. After
an interval of 10 the speed is practically equal to the terminal value, namely
0.99995 v,.

If the viscous resistance is proportional to v? (the quadratic case), the
differential equation of motion is, remembering that we are taking the positive
direction upward, d

v
—mg == cv? = m PT

The minus sign for the resistance term refers to upward motion (v positive),
and the plus sign refers to downward motion (v negative). The double sign
1s necessary for any resistive force that involves an even power of v. As in
the previous case, the differential equation of motion can be integrated to
give ¢ as a function of v:

m dy 4 ..
t = g — r tan o + & (resing)
m dy

—mg +

—r tanh™! vg + (falling)
¢

m

P r (the characteristic time)

% v (the terminal speed)

Solving for v, ty —

v, tan (rising)

t - 4
v = —uv, tanh o (falling)
T
If the body is released from rest at time ¢t = 0, then &’ = 0. We have then,
from the definition of the hyperbolic tangent,

t e"’ —_— e‘—ll"r
v = —v;tanh; = —1i: m_—”;

Again we see that the terminal speed is practically attained after the lapse
of a few characteristic times, for example, for ¢ = 57, the speed is 0.99991 v,.
Graphs of speed versus time of fall for the linear and quadratic laws of resist-
ance are shown in Figure 2.3. It is interesting to note that, in both the
linear and the quadratic cases, the characteristic time r is equal to »./g. For
instance, if the terminal speed of a parachute is 4 ft per sec, the characteristic
time is 4 ft per sec/32 ft per sec? = } sec.




