

# MATLAB ARRAY Session 4

MS.c Haneen ALhariri MS.c Ola Ali

# **ARRAYS AND MATRICES**

An array is MATLAB's basic data structure

- Can have any number of dimensions. Most common are:

\*vector: one dimension (a single row or column)

\*matrix: two or more dimensions

\*Scalar: matrices with only one row and one column.

-Arrays can have numbers or letters

## **Creating Matrices**

In MATLAB, a vector is created by assigning the elements of the vector to a variable.

Row vector: In a row vector, the elements are entered with a space or a coma between the elements inside the square brackets  $X=[1\ 2\ 3]$ 

x=[1, 2, 3] or x=[1 2 3]

Column vector: In a column vector, the elements are entered with a semicolon between the elements inside the square brackets.

$$X = \begin{bmatrix} 1; 2; 3 \end{bmatrix}$$
$$x = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$$

A matrix can be created in MATLAB by typing the elements (numbers) inside square brackets[]

>> matrix [1 2 3 ;4 5 6 ;7 8 9]

```
Examples

>> A = [2 - 3 5; -1 4 5]

A =

2 -3 5

-1 4 5

>> x = [1 4 7]

X=

1 4 7

>> x = [1; 4; 7]

X=

1

4

7
```

## **Built-in Functions to Generate Matrices**

zeros (r, c): makes matrix of r rows and c columns, all with zeros ones (r, c): makes matrix of r rows and ccolumns, all with ones rand (r, c): makes matrix of r rows and c columns, with random numbers

eye (n): makes square matrix of n rows and columns. Main diagonal (upper left to lower right) has ones, all other elements are zero magic (n) - makes a special square matrix of n rows and c columns, called Durer's matrix

#### Examples

>> a=zeros (3,4)

 $a = 0 \ 0 \ 0 \ 0$ 

- $0\ 0\ 0\ 0$
- $0 \ 0 \ 0 \ 0$

```
>> B=ones (4,3)
B=
1 1 1
1 1 1
1 1 1
1 1 1
>> c = rand (2,3)
C=
```

 $0.8147 \quad 0.1270 \quad 0.6324$ 

d-eye (4)

 $d = 1 \ 0 \ 0 \ 0 \\ 0 \ 1 \ 0 \ 0 \\ 0 \ 0 \ 1 \ 0 \\ 0 \ 0 \ 1 \ 0 \\ 0 \ 0 \ 1 \ 0 \\ 0 \ 0 \ 1 \ 0 \\ e = magic(4)$   $e = 16 \ 2 \ 3 \ 13 \\ 5 \ 11 \ 10 \ 8 \\ 9 \ 7 \ 6 \ 12 \\ 4 \ 14 \ 15 \ 1$ 

\*To make a matrix filled with a particular number, multiply ones (m, n) by tha

Using a Colon : in Addressing Arrays

The colon:lets you address a range of elements

- Vector (row or column)
  - X(:) all elements
  - X(m:n)- elements m through n
- Matrix
  - A(:,n) all rows of column n
  - A(m,:) all columns of row m
  - A(:,m:n) all rows of columns m through n
  - A(m:n,:) all columns of rows m through n
  - A(m:n,p:q) columns p through q of rows m through n

A=[2,4,10,13;16,3,7,18;8,4,9,25;3,12,15,17] A=

| 2  | 4  | 10 | 13 |
|----|----|----|----|
| 16 | 3  | 7  | 18 |
| 8  | 4  | 9  | 25 |
| 3  | 12 | 15 | 17 |

| A(:,3)=    | :   |    |    |  |  |
|------------|-----|----|----|--|--|
| ANS =      |     |    |    |  |  |
| 10         |     |    |    |  |  |
|            | 7   |    |    |  |  |
|            | 9   |    |    |  |  |
|            | 15  |    |    |  |  |
| A(3,:)     |     |    |    |  |  |
| ANS=       |     |    |    |  |  |
| :          | 8 4 | 9  | 25 |  |  |
| A(:,2:3    | )   |    |    |  |  |
| ANS=       |     |    |    |  |  |
|            | 4   | 1( | )  |  |  |
|            | 3   | 7  |    |  |  |
|            | 4   | 9  |    |  |  |
|            | 12  | 15 | 5  |  |  |
| A(2:3,1:3) |     |    |    |  |  |
| ANS=       |     |    |    |  |  |
|            | 16  | 3  | 7  |  |  |
|            | 8   | 4  | 9  |  |  |
|            |     |    |    |  |  |

## **Addition and Subtraction**

When adding/ subtracting two arrays A and B, MATLAB adds/subtracts the corresponding elements (element wise addition/subtraction)

When add/subtract a scalar to an array, MATLAB adds/ subtracts the scalar to every element of the array EXAMPLE

For 
$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \end{bmatrix}$$
 and  $B = \begin{bmatrix} B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23} \end{bmatrix}$   
 $A + B = \begin{bmatrix} A_{11} + B_{11} & A_{12} + B_{12} & A_{13} + B_{13} \\ A_{21} + B_{21} & A_{22} + B_{22} & A_{23} + B_{23} \end{bmatrix}$   
 $A - B = \begin{bmatrix} A_{11} - B_{11} & A_{12} - B_{12} & A_{13} - B_{13} \\ A_{21} - B_{21} & A_{22} - B_{22} & A_{23} - B_{23} \end{bmatrix}$   
 $A + c = \begin{bmatrix} A_{11} + c & A_{12} + c & A_{13} + c \\ A_{21} + c & A_{22} + c & A_{23} + c \end{bmatrix}$   
 $A - c = \begin{bmatrix} A_{11} - c & A_{12} - c & A_{13} - c \\ A_{21} - c & A_{22} - c & A_{23} - c \end{bmatrix}$ 

#### **Matrix Multiplication**

There are two ways of multiplying matrices - matrix multiplication and elementwise multiplication

- MATLAB denotes this with asterisk (\*)
- Number of columns in left matrix must be same as number of rows

| in right matrix |   | >>C=/ | A*B   |     |    |    |
|-----------------|---|-------|-------|-----|----|----|
| A=              |   |       | C=    | 15  | 18 | 12 |
| 3               | 3 | 1     |       | 17  | 19 | 13 |
| 3               | 2 | 2     |       | 13  | 14 | 12 |
| 1               | 1 | 3     | >>D=] | B*A |    |    |
| B=              |   |       | D=    | 19  | 16 | 12 |
| 3               | 3 | 1     |       | 11  | 9  | 11 |
| 1               | 2 | 2     |       | 21  | 18 | 18 |
| 3               | 3 | 3     |       |     |    |    |

| 2           | 0 | 3 |    | 1 | 2 | 3 |
|-------------|---|---|----|---|---|---|
| <b>A</b> =4 | 5 | 6 | B= | 4 | 5 | 6 |
| 7           | 1 | 9 |    | 7 | 8 | 9 |

A=

|       | 2  | 0  | 3  |  |  |
|-------|----|----|----|--|--|
|       | 4  | 5  | 6  |  |  |
|       | 7  | 1  | 9  |  |  |
| B=    |    |    |    |  |  |
|       | 1  | 2  | 3  |  |  |
|       | 4  | 5  | 6  |  |  |
|       | 7  | 8  | 9  |  |  |
| Mat=  |    |    |    |  |  |
|       | 2  | 0  | 9  |  |  |
|       | 16 | 25 | 36 |  |  |
|       | 49 | 8  | 81 |  |  |
| Mat1= |    |    |    |  |  |
|       | 4  | 0  | 9  |  |  |
|       | 16 | 25 | 36 |  |  |
|       | 49 | 1  | 81 |  |  |
|       |    |    |    |  |  |