

Analytic Mechanics

Second lecture Vector calculus and Kinematic of a particle

M. Sc. Baraa Abd Alrda

M. Sc. Heider Hassan Al-kaaby

Second Stage

Department of medical physics

Al-Mustaqbal University-College

2022- 2023

1. Derivative of vector

Consider a vector Awhose components are functions of a single variable u. The vector may represent position, velocity, and so on. The parameter u is usually the time t, but it can be any quantity that determines the components of A

$$\vec{A}(u) = \hat{i}A_x(u) + \hat{j}A_y(u) + \hat{k}A_z(u)$$

Derivative of a vector is a vector whose components are ordinary derivatives

$$\frac{dA}{du} = i \frac{dA_x}{du} + j \frac{dA_y}{du} + k \frac{dA_z}{du}$$

**The derivative of the sum of two vectors is equal to the sum of the derivatives,

$$\frac{d}{du}(\overrightarrow{A} + \overrightarrow{B}) = \frac{d\overrightarrow{A}}{du} + \frac{d\overrightarrow{B}}{du}$$

** Derivative of products of vectors

$$\frac{d(\overrightarrow{nA})}{du} = \frac{dn}{du} \overrightarrow{A} + n \frac{d\overrightarrow{A}}{du}$$

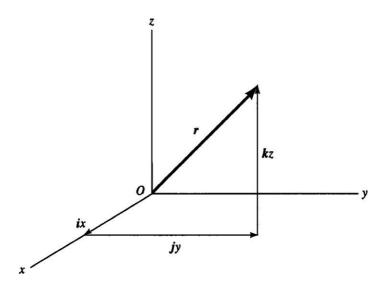
$$\frac{d(\overrightarrow{A} \cdot \overrightarrow{B})}{du} = \frac{d\overrightarrow{A}}{du} \cdot \overrightarrow{B} + \overrightarrow{A} \cdot \frac{d\overrightarrow{B}}{du}$$

$$\frac{d(\overrightarrow{A} \times \overrightarrow{B})}{du} = \frac{d\overrightarrow{A}}{du} \times \overrightarrow{B} + \overrightarrow{A} \times \frac{d\overrightarrow{B}}{du}$$

2. <u>Position Vector of a Particle: Velocity and Acceleration</u>

The position of a particle can be specified by a single vector, the displacement of the particle relative to the origin of the coordinate system. This vector is called the position vector of the particle.

$$\vec{r} = \hat{i}x + \hat{j}y + \hat{k}z$$



** The velocity vector.

If the position vector for a particle \overline{x} and the parameter is the lime t the derivative of r with respect to t is called the velocity, which we shall denote by v:

$$\vec{v} = \frac{d\vec{r}}{dt} = \hat{i}\dot{x} + \hat{j}\dot{y} + \hat{k}\dot{z}$$

Where the dots indicate differentiation with respect to t. The magnitude of the velocity is called the speed. In rectangular components the speed is just

$$\mathbf{v} = |\vec{\mathbf{v}}| = (\mathbf{\dot{x}}^2 + \mathbf{\dot{y}}^2 + \mathbf{\dot{z}}^2)^{\frac{1}{2}}$$

**The acceleration vector

The time derivative of the velocity is called the acceleration. Denoting the acceleration with a,

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d^2\vec{r}}{dt^2}$$

In rectangular components:

$$\vec{a} = \vec{i}\vec{x} + \vec{j}\vec{y} + \vec{k}\vec{z}$$

Thus, acceleration is a vector quantity whose components, in rectangular coordinates, are the second derivatives of the positional coordinates of a moving particle.

Example: Projectile Motion

Let us examine the motion represented by the equation:

$$\vec{r}(t) = \hat{i}bt + \hat{j}(ct - \frac{gt^2}{2}) + \hat{k}0$$

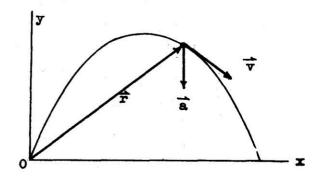
This represents motion in the x-y plane, because the z component is constant and equal to zero. The velocity v is obtained by differentiating with respect to t, namely:

$$\vec{v} = \frac{d\vec{r}}{dt} \hat{j} \hat{i} \hat{b} + \hat{j} (c - gt)$$

The acceleration, likewise, is given by:

$$\vec{a} = \frac{d\vec{v}}{dt} = -\hat{j}g$$

Thus, a is in the negative y direction and has the constant magnitude g. The path of motion is a parabola, as shown in Figure.



The speed v varies with t according to the equation:

$$\mathbf{v} = \left[\mathbf{b}^2 + (\mathbf{c} - \mathbf{gt})^2\right]^{\frac{1}{R}}$$

Example: Circular Motion

Suppose the position vector of a particle is given by:

$$\vec{r} = \hat{l}b \sin \omega t + \hat{j}b \cos \omega t + \hat{k}c$$

Where a, is a constant.

Let us analyze the motion. The distance from the origin remains constant:

$$|\vec{r}| = r = (r^2 \sin^2 \omega t + b^2 \cos^2 \omega t + c^2)^{\frac{1}{2}}$$

= $(b^2 + c^2)^{\frac{1}{2}}$

Differentiating r, we find the velocity vector:

$$\vec{v} = \frac{d\vec{r}}{dt} = ib\omega\cos\omega t - jb\omega\sin\omega t + ko$$

The velocity vector is parallel to the x-y Plane. The particle moves with constant speed:

$$\mathbf{v} = |\mathbf{v}| = (\mathbf{b}^2 \omega^2 \cos^2 \omega \mathbf{t} + \mathbf{b}^2 \omega^2 \sin^2 \omega \mathbf{t})^{\frac{1}{2}} = \mathbf{b} \omega$$

The acceleration is:

$$\vec{a} = \frac{d\vec{v}}{dt} = -\hat{i}b\omega^2 \sin \omega t - \hat{j}b\omega^2 \cos \omega t$$

In this case the acceleration is perpendicular to the velocity, because the dot product of v and a vanishes:

$$\vec{v} \cdot \vec{a} = (b\omega \cos \omega t)(-b\omega^2 \sin \omega t) + (-b\omega \sin \omega t)(-b\omega^2 \cos \omega t) = 0$$

3. Vector integration

Suppose that the time derivative of a vector \mathbf{r} is given in rectangular coordinates where each component is known as a function of time, namely,

$$\frac{d\vec{r}}{dt} = \hat{i}f_1(t) + \hat{j}f_2(t) + \hat{k}f_3(t)$$

It is possible to integrate with respect to t to obtain

$$\mathbf{r} = \mathbf{i} \int f_1(t) dt + \mathbf{j} \int f_2(t) dt + \mathbf{k} \int f_3(t) dt$$

Example:

The velocity vector of a moving particle is given by:

$$\overline{\mathbf{v}} = \mathbf{i}\mathbf{A} + \mathbf{j}\mathbf{B}\mathbf{t} + \mathbf{k}\mathbf{O}\mathbf{t}^{-1}$$

in which A,B,C are constants. Find r

$$\vec{r} = \hat{i} \int Adt + \hat{j} \int Bt dt + \hat{k} \int Ct^{-1}dt$$

$$= \hat{i}At + \hat{j}B + \hat{k}C \ln t + \hat{r}_0$$

Where r_o is the constant of integration.