

AL- MUSTAQBAL UNIVERSITY COLLEGE DEPARTMENT OF BIOMEDICAL ENGINEERING

Digital Signal Processing (DSP) BME 312

Lecture 6

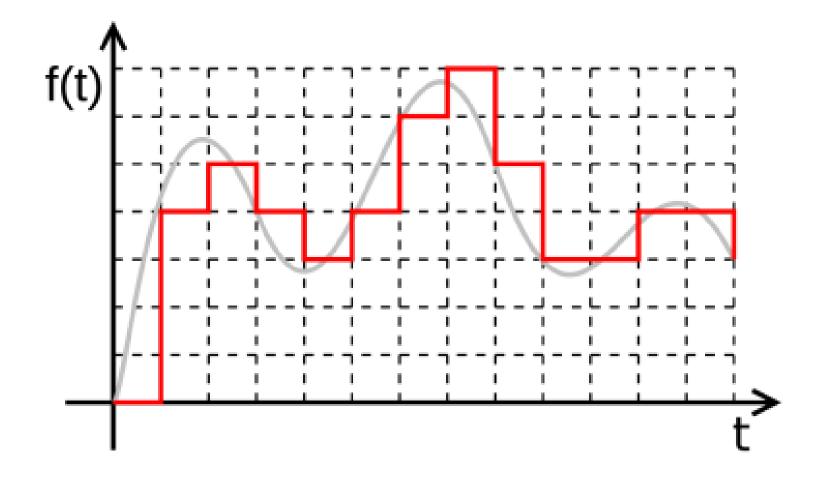
- Continuous Time Signal -

Dr. Zaidoon AL-Shammari

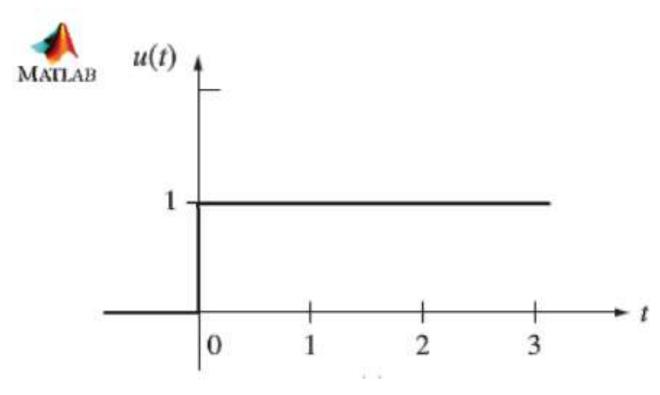
Lecturer / Researcher

zaidoon.waleed@mustaqbal-college.edu.iq

Continuous Time Signal

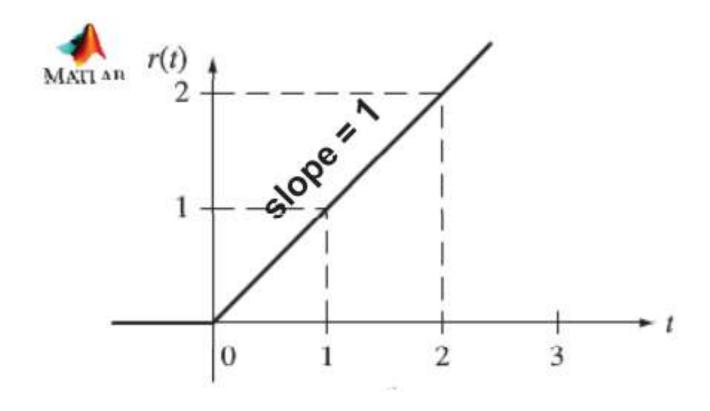


Unit - Step Function u(t)



$$u(t) = \begin{cases} 1, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

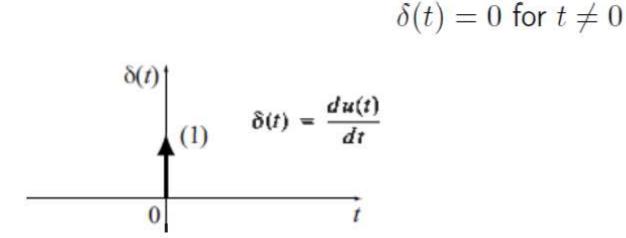
Unit - Ramp Function r(t)



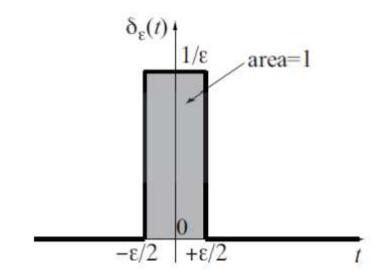
$$r(t) = \begin{cases} t, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

Unit Impulse

The unit impulse also called the delta function or the Dirac distribution, is defined by



$$\delta[n] = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases}$$



where
$$\delta(t) = \lim_{\varepsilon \to 0} \delta_{\varepsilon}(t)$$
,

$$\delta_{\varepsilon}(t) = \begin{cases} 1/\varepsilon, & -\varepsilon/2 \le t \le \varepsilon/2 \\ 0, & |t| > \varepsilon/2 \end{cases}$$

Unit Impulse

If x(t) is a signal that is continuous at t = 0, then

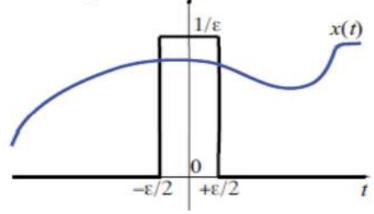
$$x(t)\delta(t) = x(0)\delta(t)$$

In particular,

$$\int_{-a}^{a} x(t)\delta(t)dt = x(0) \qquad \text{for any } 0 < a \le +\infty.$$

You can convince yourselves of this by approximating $\delta(t)$ with a pulse, such as $\delta_s(t)$, and using the fact that, if s is small enough, then

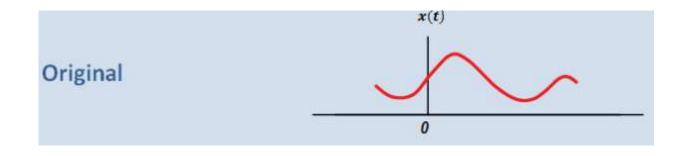
$$x(t) \approx x(0)$$
 for $-\varepsilon/2 \le t \le \varepsilon/2$.



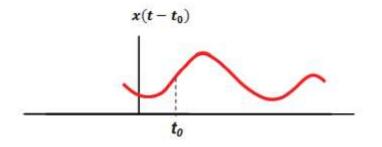
Transformations of time: Time-Shifted Signals

To consider the time-shifted version of x(t), use the following rules:

The signal $x(t - t_0)$ is x(t) shifted to the right by t_0 seconds.



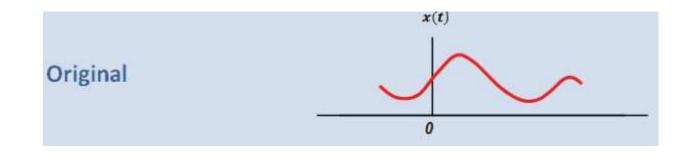
Delayed

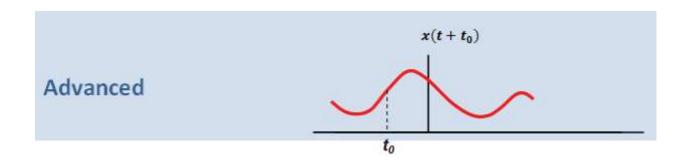


Transformations of time: Time-Shifted Signals

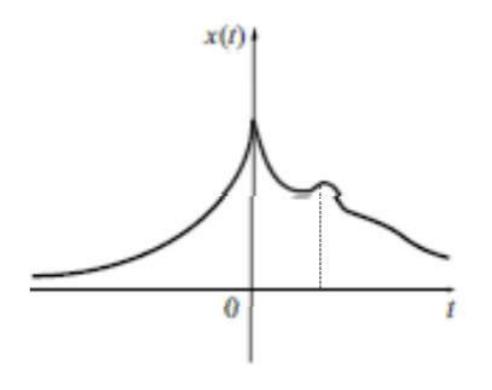
To consider the time-shifted version of x(t), use the following rules:

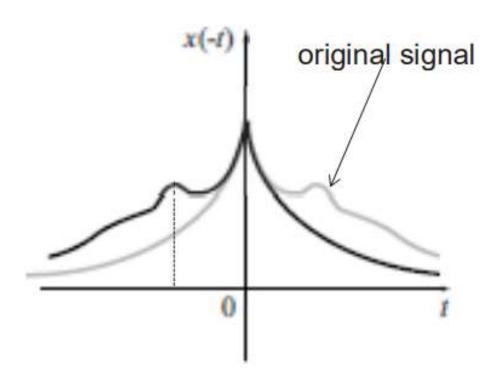
The signal $x(t + t_0)$ is x(t) shifted to the left by t_0 seconds.





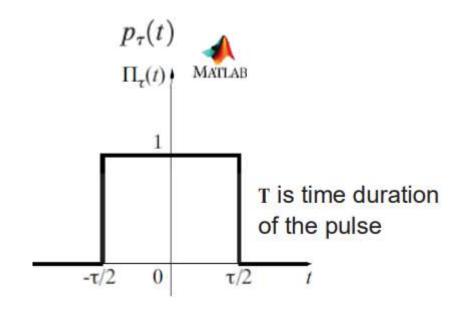
Transformations of time: Time reversal (Reflection)





Rectangular pulse function

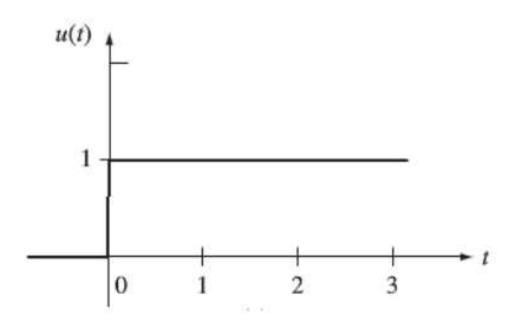
$$p_{\tau}(t) = \begin{cases} 1, & \frac{-\tau}{2} \le t < \frac{\tau}{2} \\ 0, & t < \frac{-\tau}{2}, t \ge \frac{\tau}{2} \end{cases}$$



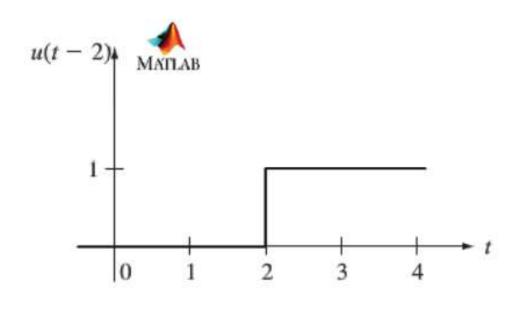
 $p_{\tau}(t)$ can be expressed in the form

$$\Pi_{\tau}(t) = u\left(t + \frac{\tau}{2}\right) - u\left(t - \frac{\tau}{2}\right)$$

Delayed

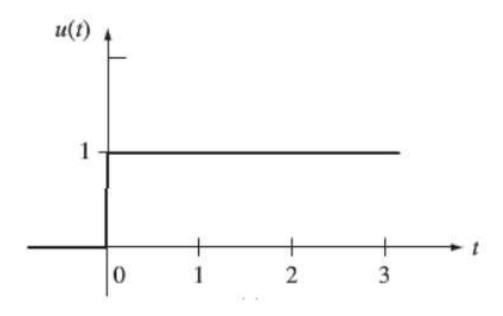


$$u(t) = \begin{cases} 1, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

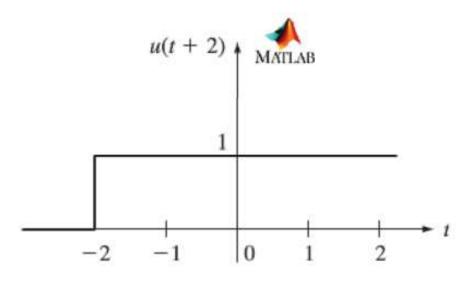


2 second right shift of u(t)

Advanced

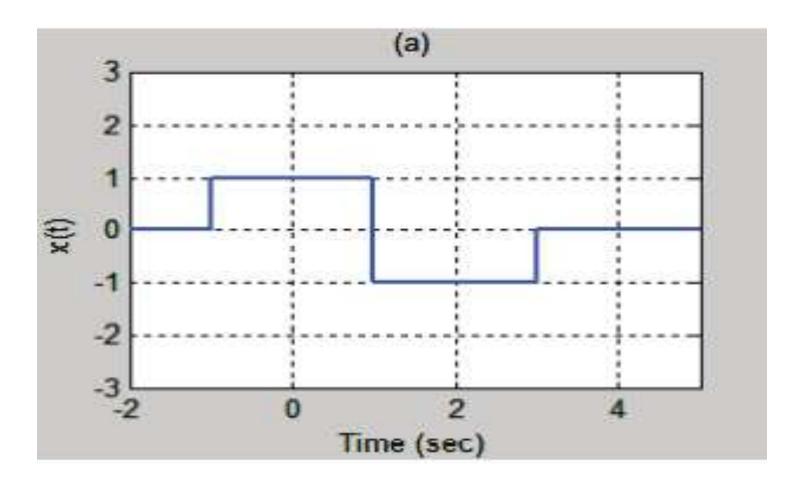


$$u(t) = \begin{cases} 1, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

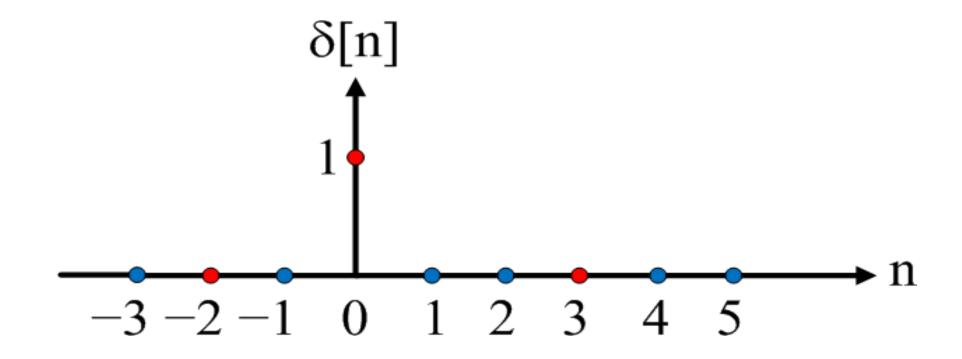


2 second left shift of u(t)

$$x(t) = u(t+1) - 2u(t-1) + u(t-3)$$

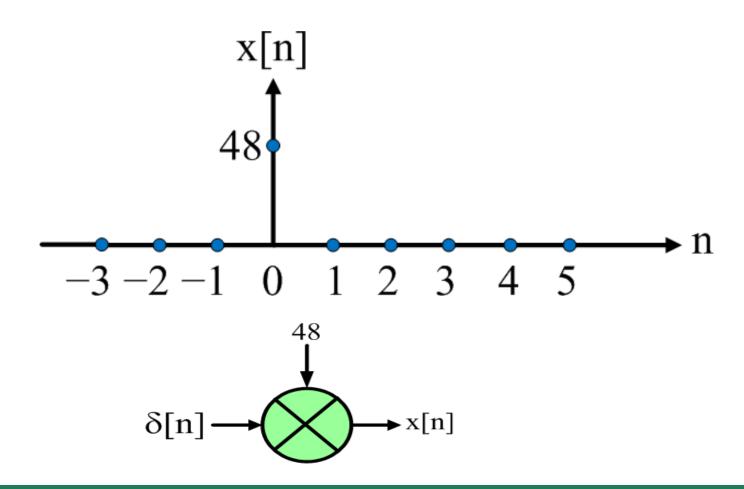


Determine the values $\delta[0]$, $\delta[3]$ and $\delta[-2]$.

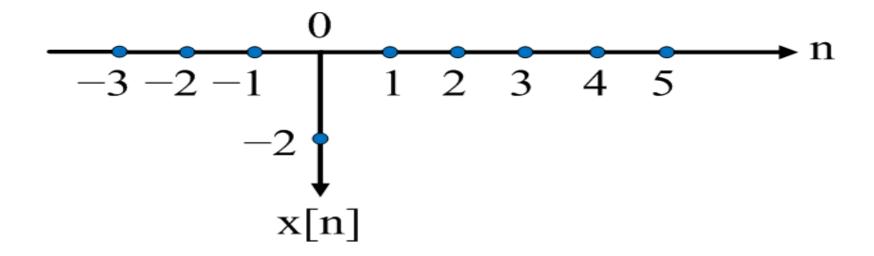


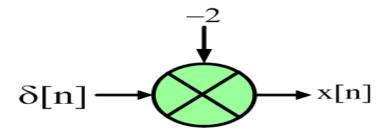
$$\delta[0] = 1$$
, $\delta[3] = 0$ and $\delta[-2] = 0$

$$x[n] = 48\delta[n]$$

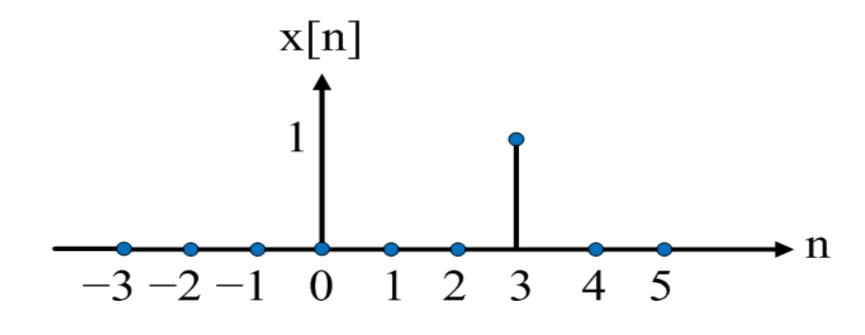


$$x[n] = -2\delta[n]$$



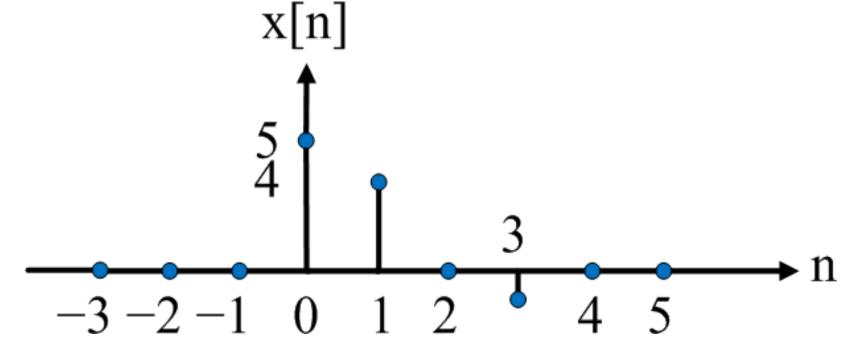


$$x[n] = \delta[n-3]$$

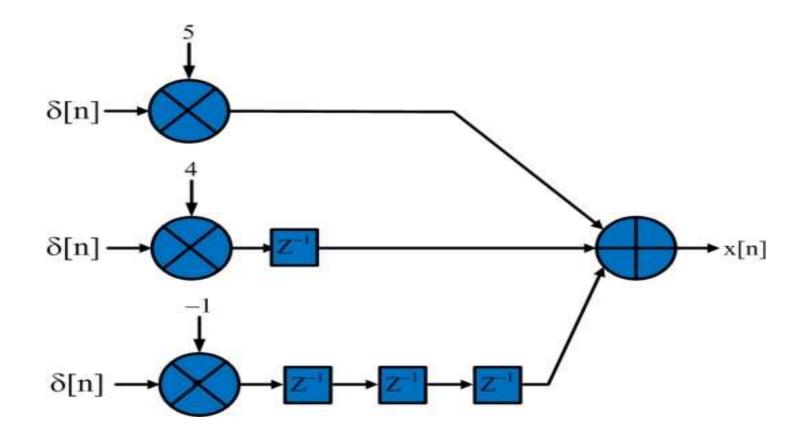


$$\delta[n] \xrightarrow{Z^{-1}} \frac{\delta[n-1]}{Z^{-1}} \xrightarrow{\delta[n-2]} \delta[n-3]$$

$$x[n] = 5\delta[n] + 4\delta[n-1] - \delta[n-3]$$



$$x[n] = 5\delta[n] + 4\delta[n-1] - \delta[n-3]$$



AL- MUSTAQBAL UNIVERSITY COLLEGE DEPARTMENT OF BIOMEDICAL ENGINEERING

