AL- MUSTAQBAL UNIVERSITY COLLEGE DEPARTMIENT OF BIOMIDDICAL ENGINEERING

Digital Signal Processing (DSP)
 BME 312

Lecture 7

- Discrete Time Signals -

Dr. Zaidoon AL-Shammari
Lecturer / Researcher
zaidoon.waleed@mustaqbal-college.edu.iq

Discrete Time Signals

Sampling Process

Sampling Process

Sampling Process

Sampling Process

Sampling Process

Unit - Step Function u(n)

$$
u[n]= \begin{cases}1, & n=0,1, \ldots \\ 0, & n=-1,-2, \ldots\end{cases}
$$

Unit - Ramp Function r(n)

Unit Impulse Function

$$
\delta[n]= \begin{cases}1, & n=0 \\ 0, & n \neq 0\end{cases}
$$

Rectangular Pulse Function

$$
p_{L}[n]= \begin{cases}1, & n=-(L-1) / 2, \ldots,-1,0,1, \ldots,(L-1) / 2 \\ 0, & \text { all other } n\end{cases}
$$

Determine the values of $u[-1], u[0]$ and $u[1]$.

Example 2

Al- Mustaqbal
University College

$\mathrm{x}[\mathrm{n}]=\mathrm{u}[\mathrm{n}]$

Example 3

$\mathrm{x}[\mathrm{n}]=3 \mathrm{u}[\mathrm{n}]$

Example 4

$\mathrm{x}[\mathrm{n}]=\mathrm{u}[-\mathrm{n}]$

Example 5

$x[n]=u[n-3]$

Example 6

$x[n]=A \cos (\Omega n+\theta)$

Example 7

$$
x[n]=u[n]-2 u[n-1]+u[n-4]
$$

Example 8

$$
x[n]= \begin{cases}1, & -4 \leq n \leq 4 \\ 0, & \text { otherwise }\end{cases}
$$

