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Notice that the numerator of the closed-loop transfer function C(s)/R(s) is the product of the
transfer functions of the feedforward path. The denominator of C(s)/R(s) is equal to

(The positive feedback loop yields a negative term in the denominator.)

2–4 MODELING IN STATE SPACE

In this section we shall present introductory material on state-space analysis of control
systems.

Modern Control Theory. The modern trend in engineering systems is toward
greater complexity, due mainly to the requirements of complex tasks and good accu-
racy. Complex systems may have multiple inputs and multiple outputs and may be time
varying. Because of the necessity of meeting increasingly stringent requirements on
the performance of control systems, the increase in system complexity, and easy access
to large scale computers, modern control theory, which is a new approach to the analy-
sis and design of complex control systems, has been developed since around 1960.This
new approach is based on the concept of state. The concept of state by itself is not
new, since it has been in existence for a long time in the field of classical dynamics and
other fields.

Modern Control Theory Versus Conventional Control Theory. Modern con-
trol theory is contrasted with conventional control theory in that the former is appli-
cable to multiple-input, multiple-output systems, which may be linear or nonlinear,
time invariant or time varying, while the latter is applicable only to linear time-
invariant single-input, single-output systems. Also, modern control theory is essen-
tially time-domain approach and frequency domain approach (in certain cases such as
H-infinity control), while conventional control theory is a complex frequency-domain
approach. Before we proceed further, we must define state, state variables, state vector,
and state space.

State. The state of a dynamic system is the smallest set of variables (called state
variables) such that knowledge of these variables at t=t0, together with knowledge of
the input for t � t0 , completely determines the behavior of the system for any time
t � t0.

Note that the concept of state is by no means limited to physical systems. It is appli-
cable to biological systems, economic systems, social systems, and others.

State Variables. The state variables of a dynamic system are the variables mak-
ing up the smallest set of variables that determine the state of the dynamic system. If at

 = 1 - G1 G2 H1 + G2 G3 H2 + G1 G2 G3 

= 1 + A-G1 G2 H1 + G2 G3 H2 + G1 G2 G3B

1 +a (product of the transfer functions around each loop)
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least n variables x1, x2, p , xn are needed to completely describe the behavior of a dy-
namic system (so that once the input is given for t � t0 and the initial state at t=t0 is
specified, the future state of the system is completely determined), then such n variables
are a set of state variables.

Note that state variables need not be physically measurable or observable quantities.
Variables that do not represent physical quantities and those that are neither measura-
ble nor observable can be chosen as state variables. Such freedom in choosing state vari-
ables is an advantage of the state-space methods. Practically, however, it is convenient
to choose easily measurable quantities for the state variables, if this is possible at all, be-
cause optimal control laws will require the feedback of all state variables with suitable
weighting.

State Vector. If n state variables are needed to completely describe the behavior
of a given system, then these n state variables can be considered the n components of a
vector x. Such a vector is called a state vector. A state vector is thus a vector that deter-
mines uniquely the system state x(t) for any time t � t0 , once the state at t=t0 is given
and the input u(t) for t � t0 is specified.

State Space. The n-dimensional space whose coordinate axes consist of the x1

axis, x2 axis, p , xn axis, where x1, x2,p , xn are state variables, is called a state space.Any
state can be represented by a point in the state space.

State-Space Equations. In state-space analysis we are concerned with three types
of variables that are involved in the modeling of dynamic systems: input variables, out-
put variables, and state variables. As we shall see in Section 2–5, the state-space repre-
sentation for a given system is not unique, except that the number of state variables is
the same for any of the different state-space representations of the same system.

The dynamic system must involve elements that memorize the values of the input for
t � t1 . Since integrators in a continuous-time control system serve as memory devices,
the outputs of such integrators can be considered as the variables that define the inter-
nal state of the dynamic system.Thus the outputs of integrators serve as state variables.
The number of state variables to completely define the dynamics of the system is equal
to the number of integrators involved in the system.

Assume that a multiple-input, multiple-output system involves n integrators.Assume
also that there are r inputs u1(t), u2(t), p , ur(t) and m outputs y1(t), y2(t), p , ym(t).
Define n outputs of the integrators as state variables: x1(t), x2(t), p , xn(t) Then the
system may be described by

(2–8)

 x
#
n(t) = fnAx1 , x2 , p , xn ; u1 , u2 , p , ur ; tB

 �

 �

 �

 x
#
2(t) = f2Ax1 , x2 , p , xn ; u1 , u2 , p , ur ; tB

 x
#
1(t) = f1Ax1 , x2 , p , xn ; u1 , u2 , p , ur ; tB
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The outputs y1(t), y2(t), p , ym(t) of the system may be given by

(2–9)

If we define

 ym(t) = gmAx1 , x2 , p , xn ; u1 , u2 , p , ur ; tB

 �

 �

 �

 y2(t) = g2Ax1 , x2 , p , xn ; u1 , u2 , p , ur ; tB

 y1(t) = g1Ax1 , x2 , p , xn ; u1 , u2 , p , ur ; tB

u(t) = F
u1(t)

u2(t)

�

�

�

ur(t)

Vg(x, u, t) = F
g1Ax1 , x2 , p , xn ; u1 , u2 , p , ur ; tB
g2Ax1 , x2 , p , xn ; u1 , u2 , p , ur ; tB

�

�

�

gmAx1 , x2 , p , xn ; u1 , u2 , p , ur ; tB

V , y(t) = F
y1(t)

y2(t)

�

�

�

ym(t)

V ,

f(x, u, t) = F
f1Ax1 , x2 , p , xn ; u1 , u2 , p , ur ; tB
f2Ax1 , x2 , p , xn ; u1 , u2 , p , ur ; tB

�

�

�

fnAx1 , x2 , p , xn ; u1 , u2 , p , ur ; tB

V , x(t) = F
x1(t)

x2(t)

�

�

�

xn(t)

V ,

then Equations (2–8) and (2–9) become

(2–10)

(2–11)

where Equation (2–10) is the state equation and Equation (2–11) is the output equation.
If vector functions f and/or g involve time t explicitly, then the system is called a time-
varying system.

If Equations (2–10) and (2–11) are linearized about the operating state, then we
have the following linearized state equation and output equation:

(2–12)

(2–13)

where A(t) is called the state matrix, B(t) the input matrix, C(t) the output matrix, and
D(t) the direct transmission matrix. (Details of linearization of nonlinear systems about

 y(t) = C(t)x(t) + D(t)u(t)

 x# (t) = A(t)x(t) + B(t)u(t)

y(t) = g(x, u, t)

 x# (t) = f(x, u, t)
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Figure 2–15
Mechanical system.
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Figure 2–14
Block diagram of the
linear, continuous-
time control system
represented in state
space.

the operating state are discussed in Section 2–7.) A block diagram representation of
Equations (2–12) and (2–13) is shown in Figure 2–14.

If vector functions f and g do not involve time t explicitly then the system is called a
time-invariant system. In this case, Equations (2–12) and (2–13) can be simplified to

(2–14)

(2–15)

Equation (2–14) is the state equation of the linear, time-invariant system and Equation
(2–15) is the output equation for the same system. In this book we shall be concerned
mostly with systems described by Equations (2–14) and (2–15).

In what follows we shall present an example for deriving a state equation and output
equation.

EXAMPLE 2–2 Consider the mechanical system shown in Figure 2–15. We assume that the system is linear. The
external force u(t) is the input to the system, and the displacement y(t) of the mass is the output.
The displacement y(t) is measured from the equilibrium position in the absence of the external
force. This system is a single-input, single-output system.

From the diagram, the system equation is

(2–16)

This system is of second order.This means that the system involves two integrators. Let us define
state variables x1(t) and x2(t) as

Then we obtain

or

(2–17)

(2–18)

The output equation is
(2–19)y = x1

 x
#
2 = -

k

m
x1 -

b

m
x2 +

1

m
u

 x
#
1 = x2

 x
#
2 =

1

m
 A-ky - by

# B +
1

m
 u

 x
#
1 = x2

x2(t) = y
#
(t)

x1(t) = y(t)

my
$ + by

# + ky = u

 y# (t) = Cx(t) + Du(t)

 x# (t) = Ax(t) + Bu(t)



In a vector-matrix form, Equations (2–17) and (2–18) can be written as

(2–20)

The output equation, Equation (2–19), can be written as

(2–21)

Equation (2–20) is a state equation and Equation (2–21) is an output equation for the system.
They are in the standard form:

where

Figure 2–16 is a block diagram for the system. Notice that the outputs of the integrators are state
variables.

Correlation Between Transfer Functions and State-Space Equations. In what
follows we shall show how to derive the transfer function of a single-input, single-output
system from the state-space equations.

Let us consider the system whose transfer function is given by

(2–22)

This system may be represented in state space by the following equations:

(2–23)

(2–24) y = Cx + Du

 x# = Ax + Bu

Y(s)

U(s)
= G(s)

A = C 0

-
k

m

1

-
b

m

S ,  B = C 0
1
m

S ,  C = [1 0] ,  D = 0

 y = Cx + Du

 x# = Ax + Bu

y = [1 0]Bx1

x2
R

Bx
#
1

x
#
2
R = C 0

-
k

m

1

-
b

m

S Bx1

x2
R + C 0

1

m

S u
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Figure 2–16
Block diagram of the
mechanical system
shown in Figure 2–15.
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where x is the state vector, u is the input, and y is the output.The Laplace transforms of
Equations (2–23) and (2–24) are given by

(2–25)

(2–26)

Since the transfer function was previously defined as the ratio of the Laplace transform
of the output to the Laplace transform of the input when the initial conditions were
zero, we set x(0) in Equation (2–25) to be zero. Then we have

or

By premultiplying to both sides of this last equation, we obtain

(2–27)

By substituting Equation (2–27) into Equation (2–26), we get

(2–28)

Upon comparing Equation (2–28) with Equation (2–22), we see that

(2–29)

This is the transfer-function expression of the system in terms of A, B, C, and D.
Note that the right-hand side of Equation (2–29) involves Hence G(s)

can be written as

where Q(s) is a polynomial in s. Notice that is equal to the characteristic poly-
nomial of G(s). In other words, the eigenvalues of A are identical to the poles of G(s).

EXAMPLE 2–3 Consider again the mechanical system shown in Figure 2–15. State-space equations for the system
are given by Equations (2–20) and (2–21).We shall obtain the transfer function for the system from
the state-space equations.

By substituting A, B, C, and D into Equation (2–29), we obtain

 = [1 0]C s

k

m

-1

s +
b

m

S -1C 0

1

m

S
 = [1 0] c B s

0

0

s
R - C 0

-
k

m

1

-
b

m

S s -1C 0

1

m

S + 0

 G(s) = C(s I - A)-1 B + D

∑s I - A∑

G(s) =
Q(s)

∑s I - A∑

(s I - A)-1.

G(s) = C(s I - A)-1 B + D

Y(s) = CC(s I - A)-1 B + D DU(s)

X(s) = (s I - A)-1 BU(s)

(s I - A)-1

(s I - A)X(s) = BU(s)

s X(s) - AX(s) = BU(s)

 Y(s) = CX(s) + DU(s)

 sX(s) - x(0) = AX(s) + BU(s)
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Note that

(Refer to Appendix C for the inverse of the 2 � 2 matrix.)
Thus, we have

which is the transfer function of the system. The same transfer function can be obtained from
Equation (2–16).

Transfer Matrix. Next, consider a multiple-input, multiple-output system.Assume
that there are r inputs and m outputs Define

The transfer matrix G(s) relates the output Y(s) to the input U(s), or

where G(s) is given by

[The derivation for this equation is the same as that for Equation (2–29).] Since the
input vector u is r dimensional and the output vector y is m dimensional, the transfer ma-
trix G(s) is an m*r matrix.

2–5 STATE-SPACE REPRESENTATION OF SCALAR
DIFFERENTIAL EQUATION SYSTEMS

A dynamic system consisting of a finite number of lumped elements may be described
by ordinary differential equations in which time is the independent variable. By use of
vector-matrix notation, an nth-order differential equation may be expressed by a first-
order vector-matrix differential equation. If n elements of the vector are a set of state
variables, then the vector-matrix differential equation is a state equation. In this section
we shall present methods for obtaining state-space representations of continuous-time
systems.

G(s) = C(s I - A)-1 B + D

Y(s) = G(s )U(s )

y = F
y1

y2

�

�

�

ym

V ,  u = F
u1

u2

�

�

�

ur

V
y1 , y2 , p , ym .u1 , u2 , p , ur ,

 =
1

ms2 + bs + k

 G(s) = [1 0]
1

s2 +
b

m
s +

k

m

D s +
b

m

-
k

m

1

s

T C 0

1

m

S

C s

k

m

-1

s +
b

m

S -1

=
1

s2 +
b

m
s +

k

m

D s +
b

m

-
k

m

1

s

T
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State-Space Representation of nth-Order Systems of Linear Differential Equa-
tions in which the Forcing Function Does Not Involve Derivative Terms. Con-
sider the following nth-order system:

(2–30)

Noting that the knowledge of together with the input u(t) for
t � 0, determines completely the future behavior of the system, we may take

as a set of n state variables. (Mathematically, such a choice of state
variables is quite convenient. Practically, however, because higher-order derivative terms
are inaccurate, due to the noise effects inherent in any practical situations, such a choice
of the state variables may not be desirable.)

Let us define

Then Equation (2–30) can be written as

or

(2–31)

where

B = G
0

0

�

�

�

0

1

WA = G
0

0

�

�

�

0

-an

1

0

�

�

�

0

-an-1

0

1

�

�

�

0

-an-2

p
p

 

 
p
p

0

0

�

�

�

1

-a1

W ,x = F
x1

x2

�

�

�

xn

V ,

x# = Ax + Bu

x
#
n = -anx1 - p - a1xn + u

x
#
n-1 = xn

�

�

�

x
#
2 = x3

x
#
1 = x2

 xn = y
(n-1)

 �
 �
 �

 x2 = y
#

 x1 = y

y(t), y
#
(t), p , y

(n-1)
(t)

y(0), y
#
(0), p , y

(n-1)
(0),

y
(n)

+  a1y
(n-1)

+ p + an-1 y# + an y = u
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The output can be given by

or

(2–32)

where

[Note that D in Equation (2–24) is zero.] The first-order differential equation, Equa-
tion (2–31), is the state equation, and the algebraic equation, Equation (2–32), is the
output equation.

Note that the state-space representation for the transfer function system

is given also by Equations (2–31) and (2–32).

State-Space Representation of nth-Order Systems of Linear Differential Equa-
tions in which the Forcing Function Involves Derivative Terms. Consider the dif-
ferential equation system that involves derivatives of the forcing function, such as

(2–33)

The main problem in defining the state variables for this case lies in the derivative
terms of the input u. The state variables must be such that they will eliminate the de-
rivatives of u in the state equation.

One way to obtain a state equation and output equation for this case is to define the
following n variables as a set of n state variables:

(2–34)

xn = y
(n-1)

-  b0u
(n-1)

-  b1u
(n-2)

- p - bn-2 u# - bn-1 u = x
#
n-1 - bn-1 u

�

�

�

x3 = y
$ - b0 u$ - b1u

# - b2 u = x
#
2 - b2 u

x2 = y
# - b0 u# - b1 u = x

#
1 - b1 u

x1 = y - b0 u

y
(n)

+ a1 y
(n-1)

+ p + an-1 y# + an y = b0 u
(n)

+ b1 u
(n-1)

+ p + bn-1 u# + bn u

Y(s)

U(s)
=

1
sn + a1 sn-1 + p + an-1 s + an

C = [1 0 p 0]

y = Cx

y = [1 0 p 0]F
x1

x2

�

�

�

xn

V
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where are determined from

(2–35)

With this choice of state variables the existence and uniqueness of the solution of the
state equation is guaranteed. (Note that this is not the only choice of a set of state vari-
ables.) With the present choice of state variables, we obtain

(2–36)

where is given by

[To derive Equation (2–36), see Problem A–2–6.] In terms of vector-matrix equations,
Equation (2–36) and the output equation can be written as

 y = [1 0 p 0]F
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�
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�

�
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�
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�
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x
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x
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x
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b0 , b1 , b2 , p , bn-1
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or

(2–37)

(2–38)

where

In this state-space representation, matrices A and C are exactly the same as those for
the system of Equation (2–30).The derivatives on the right-hand side of Equation (2–33)
affect only the elements of the B matrix.

Note that the state-space representation for the transfer function

is given also by Equations (2–37) and (2–38).
There are many ways to obtain state-space representations of systems. Methods for

obtaining canonical representations of systems in state space (such as controllable canon-
ical form, observable canonical form, diagonal canonical form, and Jordan canonical
form) are presented in Chapter 9.

MATLAB can also be used to obtain state-space representations of systems from
transfer-function representations, and vice versa.This subject is presented in Section 2–6.

2–6 TRANSFORMATION OF MATHEMATICAL MODELS WITH MATLAB

MATLAB is quite useful to transform the system model from transfer function to state
space, and vice versa. We shall begin our discussion with transformation from transfer
function to state space.

Y(s)

U(s)
=

b0 sn + b1 sn-1 + p + bn-1 s + bn

sn + a1 sn-1 + p + an-1 s + an
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b2

�
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�
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Let us write the closed-loop transfer function as

Once we have this transfer-function expression, the MATLAB command

[A,B,C,D] = tf2ss(num,den)

will give a state-space representation. It is important to note that the state-space repre-
sentation for any system is not unique. There are many (infinitely many) state-space
representations for the same system. The MATLAB command gives one possible such
state-space representation.

Transformation from Transfer Function to State Space Representation.
Consider the transfer-function system

(2–39)

There are many (infinitely many) possible state-space representations for this system.
One possible state-space representation is

Another possible state-space representation (among infinitely many alternatives) is

(2–40) Cx
#
1

x
#
2

x
#
3

S = C-14

1

0

-56

0

1

-160

0

0

S Cx1

x2

x3

S + C1

0

0

Su

 y = [1 0 0]Cx1

x2

x3

S + [0]u

 Cx
#
1

x
#
2

x
#
3

S = C 0

0

-160

1

0

-56

0

1

-14

S Cx1

x2

x3

S + C 0

1

-14

Su

 =
s

s3 + 14s2 + 56s + 160

 
Y(s)

U(s)
=

s

(s + 10)As2 + 4s + 16B

Y(s)

U(s)
=

numerator polynomial in s

denominator polynomial in s
=

num
den
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(2–41)

MATLAB transforms the transfer function given by Equation (2–39) into the 
state-space representation given by Equations (2–40) and (2–41). For the example
system considered here, MATLAB Program 2–2 will produce matrices A, B, C,
and D.

 y = [0 1 0]Cx1

x2

x3

S + [0]u

MATLAB Program 2–2

num = [1     0];
den = [1   14   56   160];
[A,B,C,D] = tf2ss(num,den)

A =

-14 -56 -160
1 0 0
0 1 0

B =

1
0
0

C =

0 1 0

D =

0

Transformation from State Space Representation to Transfer Function. To
obtain the transfer function from state-space equations, use the following command:

[num,den] = ss2tf(A,B,C,D,iu)

iu must be specified for systems with more than one input. For example, if the system
has three inputs (u1, u2, u3), then iu must be either 1, 2, or 3, where 1 implies u1, 2
implies u2, and 3 implies u3.

If the system has only one input, then either

[num,den] = ss2tf(A,B,C,D)
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EXAMPLE 2–4 Obtain the transfer function of the system defined by the following state-space equations:

MATLAB Program 2-3 will produce the transfer function for the given system.The transfer func-
tion obtained is given by

Y(s)

U(s)
=

25s + 5
s3 + 5s2 + 25s + 5

 y = [1 0 0]Cx1

x2

x3

S
 Cx
#
1

x
#
2

x
#
3

S = C 0

0

-5

1

0

-25

0

1

-5

S Cx1

x2

x3

S + C 0

25

-120

Su

MATLAB Program 2–3

A = [0   1   0;   0   0   1;   -5   -25   -5];
B = [0; 25; -120];
C = [1   0     0];
D = [0];
[num,den] = ss2tf(A,B,C,D)

num =

0   0.0000   25.0000  5.0000

den

1.0000   5.0000   25.0000  5.0000

% ***** The same result can be obtained by entering the following command: *****

[num,den] = ss2tf(A,B,C,D,1)

num =

0   0.0000   25.0000  5.0000

den =

1.0000   5.0000   25.0000  5.0000

or

[num,den] = ss2tf(A,B,C,D,1)

may be used. For the case where the system has multiple inputs and multiple outputs,
see Problem A–2–12.
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2–7 LINEARIZATION OF NONLINEAR MATHEMATICAL MODELS

Nonlinear Systems. A system is nonlinear if the principle of superposition does
not apply. Thus, for a nonlinear system the response to two inputs cannot be calculated
by treating one input at a time and adding the results.

Although many physical relationships are often represented by linear equations,
in most cases actual relationships are not quite linear. In fact, a careful study of phys-
ical systems reveals that even so-called “linear systems” are really linear only in lim-
ited operating ranges. In practice, many electromechanical systems, hydraulic systems,
pneumatic systems, and so on, involve nonlinear relationships among the variables.
For example, the output of a component may saturate for large input signals.There may
be a dead space that affects small signals. (The dead space of a component is a small
range of input variations to which the component is insensitive.) Square-law nonlin-
earity may occur in some components. For instance, dampers used in physical systems
may be linear for low-velocity operations but may become nonlinear at high veloci-
ties, and the damping force may become proportional to the square of the operating
velocity.

Linearization of Nonlinear Systems. In control engineering a normal operation
of the system may be around an equilibrium point, and the signals may be considered
small signals around the equilibrium. (It should be pointed out that there are many ex-
ceptions to such a case.) However, if the system operates around an equilibrium point
and if the signals involved are small signals, then it is possible to approximate the non-
linear system by a linear system. Such a linear system is equivalent to the nonlinear sys-
tem considered within a limited operating range. Such a linearized model (linear,
time-invariant model) is very important in control engineering.

The linearization procedure to be presented in the following is based on the ex-
pansion of nonlinear function into a Taylor series about the operating point and the
retention of only the linear term. Because we neglect higher-order terms of the Taylor
series expansion, these neglected terms must be small enough; that is, the variables
deviate only slightly from the operating condition. (Otherwise, the result will be
inaccurate.)

Linear Approximation of Nonlinear Mathematical Models. To obtain a linear
mathematical model for a nonlinear system, we assume that the variables deviate only
slightly from some operating condition. Consider a system whose input is x(t) and out-
put is y(t). The relationship between y(t) and x(t) is given by

(2–42)

If the normal operating condition corresponds to then Equation (2–42) may be
expanded into a Taylor series about this point as follows:

(2–43)= f(x–) +
df

dx
(x - x–) +

1
2!

d2f

dx2 (x - x–)2 + p

y = f(x)

x–, y–,

y = f(x)


