

Introduction to Control Systems

1–1 INTRODUCTION

Control theories commonly used today are classical control theory (also called conventional control theory), modern control theory, and robust control theory. This book presents comprehensive treatments of the analysis and design of control systems based on the classical control theory and modern control theory. A brief introduction of robust control theory is included in Chapter 10.

Automatic control is essential in any field of engineering and science. Automatic control is an important and integral part of space-vehicle systems, robotic systems, modern manufacturing systems, and any industrial operations involving control of temperature, pressure, humidity, flow, etc. It is desirable that most engineers and scientists are familiar with theory and practice of automatic control.

This book is intended to be a text book on control systems at the senior level at a college or university. All necessary background materials are included in the book. Mathematical background materials related to Laplace transforms and vector-matrix analysis are presented separately in appendixes.

Brief Review of Historical Developments of Control Theories and Practices. The first significant work in automatic control was James Watt's centrifugal governor for the speed control of a steam engine in the eighteenth century. Other significant works in the early stages of development of control theory were due to Minorsky, Hazen, and Nyquist, among many others. In 1922, Minorsky worked on automatic controllers for steering ships and showed how stability could be determined from the differential equations describing the system. In 1932, Nyquist developed a relatively simple procedure for determining the stability of closed-loop systems on the basis of open-loop response to steady-state sinusoidal inputs. In 1934, Hazen, who introduced the term *servomechanisms* for position control systems, discussed the design of relay servomechanisms capable of closely following a changing input.

During the decade of the 1940s, frequency-response methods (especially the Bode diagram methods due to Bode) made it possible for engineers to design linear closed-loop control systems that satisfied performance requirements. Many industrial control systems in 1940s and 1950s used PID controllers to control pressure, temperature, etc. In the early 1940s Ziegler and Nichols suggested rules for tuning PID controllers, called Ziegler–Nichols tuning rules. From the end of the 1940s to the 1950s, the root-locus method due to Evans was fully developed.

The frequency-response and root-locus methods, which are the core of classical control theory, lead to systems that are stable and satisfy a set of more or less arbitrary performance requirements. Such systems are, in general, acceptable but not optimal in any meaningful sense. Since the late 1950s, the emphasis in control design problems has been shifted from the design of one of many systems that work to the design of one optimal system in some meaningful sense.

As modern plants with many inputs and outputs become more and more complex, the description of a modern control system requires a large number of equations. Classical control theory, which deals only with single-input, single-output systems, becomes powerless for multiple-input, multiple-output systems. Since about 1960, because the availability of digital computers made possible time-domain analysis of complex systems, modern control theory, based on time-domain analysis and synthesis using state variables, has been developed to cope with the increased complexity of modern plants and the stringent requirements on accuracy, weight, and cost in military, space, and industrial applications.

During the years from 1960 to 1980, optimal control of both deterministic and stochastic systems, as well as adaptive and learning control of complex systems, were fully investigated. From 1980s to 1990s, developments in modern control theory were centered around robust control and associated topics.

Modern control theory is based on time-domain analysis of differential equation systems. Modern control theory made the design of control systems simpler because the theory is based on a model of an actual control system. However, the system's stability is sensitive to the error between the actual system and its model. This means that when the designed controller based on a model is applied to the actual system, the system may not be stable. To avoid this situation, we design the control system by first setting up the range of possible errors and then designing the controller in such a way that, if the error of the system stays within the assumed range, the designed control system will stay stable. The design method based on this principle is called robust control theory. This theory incorporates both the frequencyresponse approach and the time-domain approach. The theory is mathematically very complex. Because this theory requires mathematical background at the graduate level, inclusion of robust control theory in this book is limited to introductory aspects only. The reader interested in details of robust control theory should take a graduate-level control course at an established college or university.

Definitions. Before we can discuss control systems, some basic terminologies must be defined.

Controlled Variable and Control Signal or Manipulated Variable. The controlled variable is the quantity or condition that is measured and controlled. The control signal or manipulated variable is the quantity or condition that is varied by the controller so as to affect the value of the controlled variable. Normally, the controlled variable is the output of the system. Control means measuring the value of the controlled variable of the system and applying the control signal to the system to correct or limit deviation of the measured value from a desired value.

In studying control engineering, we need to define additional terms that are necessary to describe control systems.

Plants. A plant may be a piece of equipment, perhaps just a set of machine parts functioning together, the purpose of which is to perform a particular operation. In this book, we shall call any physical object to be controlled (such as a mechanical device, a heating furnace, a chemical reactor, or a spacecraft) a plant.

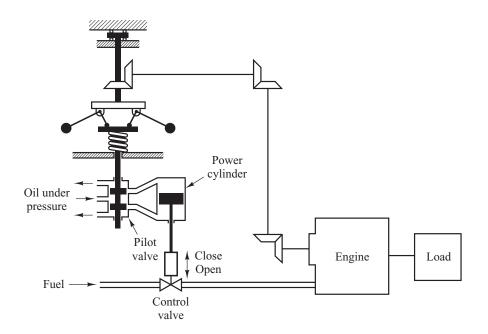
Processes. The Merriam–Webster Dictionary defines a process to be a natural, progressively continuing operation or development marked by a series of gradual changes that succeed one another in a relatively fixed way and lead toward a particular result or end; or an artificial or voluntary, progressively continuing operation that consists of a series of controlled actions or movements systematically directed toward a particular result or end. In this book we shall call any operation to be controlled a *process*. Examples are chemical, economic, and biological processes.

Systems. A system is a combination of components that act together and perform a certain objective. A system need not be physical. The concept of the system can be applied to abstract, dynamic phenomena such as those encountered in economics. The word system should, therefore, be interpreted to imply physical, biological, economic, and the like, systems.

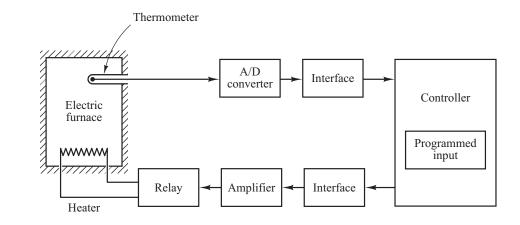
Disturbances. A disturbance is a signal that tends to adversely affect the value of the output of a system. If a disturbance is generated within the system, it is called *internal*, while an *external* disturbance is generated outside the system and is an input.

Feedback Control. Feedback control refers to an operation that, in the presence of disturbances, tends to reduce the difference between the output of a system and some reference input and does so on the basis of this difference. Here only unpredictable disturbances are so specified, since predictable or known disturbances can always be compensated for within the system.

1–2 EXAMPLES OF CONTROL SYSTEMS


In this section we shall present a few examples of control systems.

Speed Control System. The basic principle of a Watt's speed governor for an engine is illustrated in the schematic diagram of Figure 1–1. The amount of fuel admitted to the engine is adjusted according to the difference between the desired and the actual engine speeds.


The sequence of actions may be stated as follows: The speed governor is adjusted such that, at the desired speed, no pressured oil will flow into either side of the power cylinder. If the actual speed drops below the desired value due to disturbance, then the decrease in the centrifugal force of the speed governor causes the control valve to move downward, supplying more fuel, and the speed of the engine increases until the desired value is reached. On the other hand, if the speed of the engine increases above the desired value, then the increase in the centrifugal force of the governor causes the control valve to move upward. This decreases the supply of fuel, and the speed of the engine decreases until the desired value is reached.

In this speed control system, the plant (controlled system) is the engine and the controlled variable is the speed of the engine. The difference between the desired speed and the actual speed is the error signal. The control signal (the amount of fuel) to be applied to the plant (engine) is the actuating signal. The external input to disturb the controlled variable is the disturbance. An unexpected change in the load is a disturbance.

Temperature Control System. Figure 1–2 shows a schematic diagram of temperature control of an electric furnace. The temperature in the electric furnace is measured by a thermometer, which is an analog device. The analog temperature is converted

to a digital temperature by an A/D converter. The digital temperature is fed to a controller through an interface. This digital temperature is compared with the programmed input temperature, and if there is any discrepancy (error), the controller sends out a signal to the heater, through an interface, amplifier, and relay, to bring the furnace temperature to a desired value.

Business Systems. A business system may consist of many groups. Each task assigned to a group will represent a dynamic element of the system. Feedback methods of reporting the accomplishments of each group must be established in such a system for proper operation. The cross-coupling between functional groups must be made a minimum in order to reduce undesirable delay times in the system. The smaller this cross-coupling, the smoother the flow of work signals and materials will be.

A business system is a closed-loop system. A good design will reduce the managerial control required. Note that disturbances in this system are the lack of personnel or materials, interruption of communication, human errors, and the like.

The establishment of a well-founded estimating system based on statistics is mandatory to proper management. It is a well-known fact that the performance of such a system can be improved by the use of lead time, or *anticipation*.

To apply control theory to improve the performance of such a system, we must represent the dynamic characteristic of the component groups of the system by a relatively simple set of equations.

Although it is certainly a difficult problem to derive mathematical representations of the component groups, the application of optimization techniques to business systems significantly improves the performance of the business system.

Consider, as an example, an engineering organizational system that is composed of major groups such as management, research and development, preliminary design, experiments, product design and drafting, fabrication and assembling, and tesing. These groups are interconnected to make up the whole operation.

Such a system may be analyzed by reducing it to the most elementary set of components necessary that can provide the analytical detail required and by representing the dynamic characteristics of each component by a set of simple equations. (The dynamic performance of such a system may be determined from the relation between progressive accomplishment and time.)

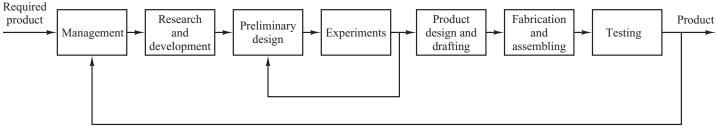


Figure 1–3

Block diagram of an engineering organizational system.

A functional block diagram may be drawn by using blocks to represent the functional activities and interconnecting signal lines to represent the information or product output of the system operation. Figure 1–3 is a possible block diagram for this system.

Robust Control System. The first step in the design of a control system is to obtain a mathematical model of the plant or control object. In reality, any model of a plant we want to control will include an error in the modeling process. That is, the actual plant differs from the model to be used in the design of the control system.

To ensure the controller designed based on a model will work satisfactorily when this controller is used with the actual plant, one reasonable approach is to assume from the start that there is an uncertainty or error between the actual plant and its mathematical model and include such uncertainty or error in the design process of the control system. The control system designed based on this approach is called a robust control system.

Suppose that the actual plant we want to control is $\widetilde{G}(s)$ and the mathematical model of the actual plant is G(s), that is,

 $\widetilde{G}(s)$ = actual plant model that has uncertainty $\Delta(s)$

G(s) = nominal plant model to be used for designing the control system

G(s) and G(s) may be related by a multiplicative factor such as

$$\widetilde{G}(s) = G(s)[1 + \Delta(s)]$$

or an additive factor

$$\widetilde{G}(s) = G(s) + \Delta(s)$$

or in other forms.

Since the exact description of the uncertainty or error $\Delta(s)$ is unknown, we use an estimate of $\Delta(s)$ and use this estimate, W(s), in the design of the controller. W(s) is a scalar transfer function such that

$$\|\Delta(s)\|_{\infty} < \|W(s)\|_{\infty} = \max_{0 \le \omega \le \infty} |W(j\omega)|$$

where $||W(s)||_{\infty}$ is the maximum value of $|W(j\omega)|$ for $0 \le \omega \le \infty$ and is called the H infinity norm of W(s).

Chapter 1 / Introduction to Control Systems

Using the small gain theorem, the design procedure here boils down to the determination of the controller K(s) such that the inequality

$$\left\|\frac{W(s)}{1+K(s)G(s)}\right\|_{\infty} < 1$$

is satisfied, where G(s) is the transfer function of the model used in the design process, K(s) is the transfer function of the controller, and W(s) is the chosen transfer function to approximate $\Delta(s)$. In most practical cases, we must satisfy more than one such inequality that involves G(s), K(s), and W(s)'s. For example, to guarantee robust stability and robust performance we may require two inequalities, such as

$$\left\| \frac{W_m(s)K(s)G(s)}{1+K(s)G(s)} \right\|_{\infty} < 1 \quad \text{for robust stability}$$
$$\left\| \frac{W_s(s)}{1+K(s)G(s)} \right\|_{\infty} < 1 \quad \text{for robust performance}$$

be satisfied. (These inequalities are derived in Section 10–9.) There are many different such inequalities that need to be satisfied in many different robust control systems. (Robust stability means that the controller K(s) guarantees internal stability of all systems that belong to a group of systems that include the system with the actual plant. Robust performance means the specified performance is satisfied in all systems that belong to the group.) In this book all the plants of control systems we discuss are assumed to be known precisely, except the plants we discuss in Section 10–9 where an introductory aspect of robust control theory is presented.

1-3 CLOSED-LOOP CONTROL VERSUS OPEN-LOOP CONTROL

Feedback Control Systems. A system that maintains a prescribed relationship between the output and the reference input by comparing them and using the difference as a means of control is called a *feedback control system*. An example would be a room-temperature control system. By measuring the actual room temperature and comparing it with the reference temperature (desired temperature), the thermostat turns the heat-ing or cooling equipment on or off in such a way as to ensure that the room temperature remains at a comfortable level regardless of outside conditions.

Feedback control systems are not limited to engineering but can be found in various nonengineering fields as well. The human body, for instance, is a highly advanced feedback control system. Both body temperature and blood pressure are kept constant by means of physiological feedback. In fact, feedback performs a vital function: It makes the human body relatively insensitive to external disturbances, thus enabling it to function properly in a changing environment.

Closed-Loop Control Systems. Feedback control systems are often referred to as *closed-loop control* systems. In practice, the terms feedback control and closed-loop control are used interchangeably. In a closed-loop control system the actuating error signal, which is the difference between the input signal and the feedback signal (which may be the output signal itself or a function of the output signal and its derivatives and/or integrals), is fed to the controller so as to reduce the error and bring the output of the system to a desired value. The term closed-loop control always implies the use of feedback control action in order to reduce system error.

Open-Loop Control Systems. Those systems in which the output has no effect on the control action are called *open-loop control systems*. In other words, in an openloop control system the output is neither measured nor fed back for comparison with the input. One practical example is a washing machine. Soaking, washing, and rinsing in the washer operate on a time basis. The machine does not measure the output signal, that is, the cleanliness of the clothes.

In any open-loop control system the output is not compared with the reference input. Thus, to each reference input there corresponds a fixed operating condition; as a result, the accuracy of the system depends on calibration. In the presence of disturbances, an open-loop control system will not perform the desired task. Open-loop control can be used, in practice, only if the relationship between the input and output is known and if there are neither internal nor external disturbances. Clearly, such systems are not feedback control systems. Note that any control system that operates on a time basis is open loop. For instance, traffic control by means of signals operated on a time basis is another example of open-loop control.

Closed-Loop versus Open-Loop Control Systems. An advantage of the closed-loop control system is the fact that the use of feedback makes the system response relatively insensitive to external disturbances and internal variations in system parameters. It is thus possible to use relatively inaccurate and inexpensive components to obtain the accurate control of a given plant, whereas doing so is impossible in the open-loop case.

From the point of view of stability, the open-loop control system is easier to build because system stability is not a major problem. On the other hand, stability is a major problem in the closed-loop control system, which may tend to overcorrect errors and thereby can cause oscillations of constant or changing amplitude.

It should be emphasized that for systems in which the inputs are known ahead of time and in which there are no disturbances it is advisable to use open-loop control. Closed-loop control systems have advantages only when unpredictable disturbances and/or unpredictable variations in system components are present. Note that the output power rating partially determines the cost, weight, and size of a control system. The number of components used in a closed-loop control system is more than that for a corresponding open-loop control system. Thus, the closed-loop control system is generally higher in cost and power. To decrease the required power of a system, open-loop control may be used where applicable. A proper combination of open-loop and closed-loop controls is usually less expensive and will give satisfactory overall system performance.

Most analyses and designs of control systems presented in this book are concerned with closed-loop control systems. Under certain circumstances (such as where no disturbances exist or the output is hard to measure) open-loop control systems may be desired. Therefore, it is worthwhile to summarize the advantages and disadvantages of using open-loop control systems.

The major advantages of open-loop control systems are as follows:

- 1. Simple construction and ease of maintenance.
- **2.** Less expensive than a corresponding closed-loop system.
- **3.** There is no stability problem.
- **4.** Convenient when output is hard to measure or measuring the output precisely is economically not feasible. (For example, in the washer system, it would be quite expensive to provide a device to measure the quality of the washer's output, clean-liness of the clothes.)

The major disadvantages of open-loop control systems are as follows:

- **1.** Disturbances and changes in calibration cause errors, and the output may be different from what is desired.
- **2.** To maintain the required quality in the output, recalibration is necessary from time to time.

1-4 DESIGN AND COMPENSATION OF CONTROL SYSTEMS

This book discusses basic aspects of the design and compensation of control systems. Compensation is the modification of the system dynamics to satisfy the given specifications. The approaches to control system design and compensation used in this book are the root-locus approach, frequency-response approach, and the state-space approach. Such control systems design and compensation will be presented in Chapters 6, 7, 9 and 10. The PID-based compensational approach to control systems design is given in Chapter 8.

In the actual design of a control system, whether to use an electronic, pneumatic, or hydraulic compensator is a matter that must be decided partially based on the nature of the controlled plant. For example, if the controlled plant involves flammable fluid, then we have to choose pneumatic components (both a compensator and an actuator) to avoid the possibility of sparks. If, however, no fire hazard exists, then electronic compensators are most commonly used. (In fact, we often transform nonelectrical signals into electrical signals because of the simplicity of transmission, increased accuracy, increased reliability, ease of compensation, and the like.)

Performance Specifications. Control systems are designed to perform specific tasks. The requirements imposed on the control system are usually spelled out as performance specifications. The specifications may be given in terms of transient response requirements (such as the maximum overshoot and settling time in step response) and of steady-state requirements (such as steady-state error in following ramp input) or may be given in frequency-response terms. The specifications of a control system must be given before the design process begins.

For routine design problems, the performance specifications (which relate to accuracy, relative stability, and speed of response) may be given in terms of precise numerical values. In other cases they may be given partially in terms of precise numerical values and

Section 1-4 / Design and Compensation of Control Systems