In terms of vector-matrix equations, we have

$$
\begin{align*}
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
\frac{M+m}{M l} g & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
-\frac{m}{M} g & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{c}
0 \\
-\frac{1}{M l} \\
0 \\
\frac{1}{M}
\end{array}\right] u} \tag{3-22}\\
& {\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]} \tag{3-23}
\end{align*}
$$

Equations (3-22) and (3-23) give a state-space representation of the inverted-pendulum system. (Note that state-space representation of the system is not unique. There are infinitely many such representations for this system.)

3-3 MATHEMATICAL MODELING OF ELECTRICAL SYSTEMS

Basic laws governing electrical circuits are Kirchhoff's current law and voltage law. Kirchhoff's current law (node law) states that the algebraic sum of all currents entering and leaving a node is zero. (This law can also be stated as follows: The sum of currents entering a node is equal to the sum of currents leaving the same node.) Kirchhoff's voltage law (loop law) states that at any given instant the algebraic sum of the voltages around any loop in an electrical circuit is zero. (This law can also be stated as follows: The sum of the voltage drops is equal to the sum of the voltage rises around a loop.) A mathematical model of an electrical circuit can be obtained by applying one or both of Kirchhoff's laws to it.

This section first deals with simple electrical circuits and then treats mathematical modeling of operational amplifier systems.

LRC Circuit. Consider the electrical circuit shown in Figure 3-7. The circuit consists of an inductance L (henry), a resistance R (ohm), and a capacitance C (farad). Applying Kirchhoff's voltage law to the system, we obtain the following equations:

Figure 3-7
Electrical circuit.

$$
\begin{align*}
L \frac{d i}{d t}+R i+\frac{1}{C} \int i d t & =e_{i} \tag{3-24}\\
\frac{1}{C} \int i d t & =e_{o} \tag{3-25}
\end{align*}
$$

Equations (3-24) and (3-25) give a mathematical model of the circuit.
A transfer-function model of the circuit can also be obtained as follows: Taking the Laplace transforms of Equations (3-24) and (3-25), assuming zero initial conditions, we obtain

$$
\begin{aligned}
L s I(s)+R I(s)+\frac{1}{C} \frac{1}{s} I(s) & =E_{i}(s) \\
\frac{1}{C} \frac{1}{s} I(s) & =E_{o}(s)
\end{aligned}
$$

If e_{i} is assumed to be the input and e_{o} the output, then the transfer function of this system is found to be

$$
\begin{equation*}
\frac{E_{o}(s)}{E_{i}(s)}=\frac{1}{L C s^{2}+R C s+1} \tag{3-26}
\end{equation*}
$$

A state-space model of the system shown in Figure 3-7 may be obtained as follows: First, note that the differential equation for the system can be obtained from Equation (3-26) as

$$
\ddot{e}_{o}+\frac{R}{L} \dot{e}_{o}+\frac{1}{L C} e_{o}=\frac{1}{L C} e_{i}
$$

Then by defining state variables by

$$
\begin{aligned}
& x_{1}=e_{o} \\
& x_{2}=\dot{e}_{o}
\end{aligned}
$$

and the input and output variables by

$$
\begin{aligned}
u & =e_{i} \\
y & =e_{o}=x_{1}
\end{aligned}
$$

we obtain

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-\frac{1}{L C} & -\frac{R}{L}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\frac{1}{L C}
\end{array}\right] u
$$

and

$$
y=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

These two equations give a mathematical model of the system in state space.
Transfer Functions of Cascaded Elements. Many feedback systems have components that load each other. Consider the system shown in Figure 3-8. Assume that e_{i} is the input and e_{o} is the output. The capacitances C_{1} and C_{2} are not charged initially.

Figure 3-8
Electrical system.

It will be shown that the second stage of the circuit ($R_{2} C_{2}$ portion) produces a loading effect on the first stage ($R_{1} C_{1}$ portion). The equations for this system are

$$
\begin{equation*}
\frac{1}{C_{1}} \int\left(i_{1}-i_{2}\right) d t+R_{1} i_{1}=e_{i} \tag{3-27}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{1}{C_{1}} \int\left(i_{2}-i_{1}\right) d t+R_{2} i_{2}+\frac{1}{C_{2}} \int i_{2} d t & =0 \tag{3-28}\\
\frac{1}{C_{2}} \int i_{2} d t & =e_{o} \tag{3-29}
\end{align*}
$$

Taking the Laplace transforms of Equations (3-27) through (3-29), respectively, using zero initial conditions, we obtain

$$
\begin{align*}
\frac{1}{C_{1} s}\left[I_{1}(s)-I_{2}(s)\right]+R_{1} I_{1}(s) & =E_{i}(s) \tag{3-30}\\
\frac{1}{C_{1} s}\left[I_{2}(s)-I_{1}(s)\right]+R_{2} I_{2}(s)+\frac{1}{C_{2} s} I_{2}(s) & =0 \tag{3-31}\\
\frac{1}{C_{2} s} I_{2}(s) & =E_{o}(s) \tag{3-32}
\end{align*}
$$

Eliminating $I_{1}(s)$ from Equations (3-30) and (3-31) and writing $E_{i}(s)$ in terms of $I_{2}(s)$, we find the transfer function between $E_{o}(s)$ and $E_{i}(\mathrm{~s})$ to be

$$
\begin{align*}
\frac{E_{o}(s)}{E_{i}(s)} & =\frac{1}{\left(R_{1} C_{1} s+1\right)\left(R_{2} C_{2} s+1\right)+R_{1} C_{2} s} \\
& =\frac{1}{R_{1} C_{1} R_{2} C_{2} s^{2}+\left(R_{1} C_{1}+R_{2} C_{2}+R_{1} C_{2}\right) s+1} \tag{3-33}
\end{align*}
$$

The term $R_{1} C_{2} s$ in the denominator of the transfer function represents the interaction of two simple $R C$ circuits. Since $\left(R_{1} C_{1}+R_{2} C_{2}+R_{1} C_{2}\right)^{2}>4 R_{1} C_{1} R_{2} C_{2}$, the two roots of the denominator of Equation (3-33) are real.

The present analysis shows that, if two $R C$ circuits are connected in cascade so that the output from the first circuit is the input to the second, the overall transfer function is not the product of $1 /\left(R_{1} C_{1} s+1\right)$ and $1 /\left(R_{2} C_{2} s+1\right)$. The reason for this is that, when we derive the transfer function for an isolated circuit, we implicitly assume that the output is unloaded. In other words, the load impedance is assumed to be infinite, which means that no power is being withdrawn at the output. When the second circuit is connected to the output of the first, however, a certain amount of power is withdrawn, and thus the assumption of no loading is violated. Therefore, if the transfer function of this system is obtained under the assumption of no loading, then it is not valid. The degree of the loading effect determines the amount of modification of the transfer function.

Complex Impedances. In deriving transfer functions for electrical circuits, we frequently find it convenient to write the Laplace-transformed equations directly, without writing the differential equations. Consider the system shown in Figure 3-9(a). In this system, Z_{1} and Z_{2} represent complex impedances. The complex impedance $Z(s)$ of a two-terminal circuit is the ratio of $E(s)$, the Laplace transform of the voltage across the terminals, to $I(s)$, the Laplace transform of the current through the element, under the assumption that the initial conditions are zero, so that $Z(s)=E(s) / I(s)$. If the two-terminal element is a resistance R, capacitance C, or inductance L, then the complex impedance is given by $R, 1 / C s$, or $L s$, respectively. If complex impedances are connected in series, the total impedance is the sum of the individual complex impedances.

Remember that the impedance approach is valid only if the initial conditions involved are all zeros. Since the transfer function requires zero initial conditions, the impedance approach can be applied to obtain the transfer function of the electrical circuit. This approach greatly simplifies the derivation of transfer functions of electrical circuits.

Consider the circuit shown in Figure 3-9(b). Assume that the voltages e_{i} and e_{o} are the input and output of the circuit, respectively. Then the transfer function of this circuit is

$$
\frac{E_{o}(s)}{E_{i}(s)}=\frac{Z_{2}(s)}{Z_{1}(s)+Z_{2}(s)}
$$

For the system shown in Figure 3-7,

$$
Z_{1}=L s+R, \quad Z_{2}=\frac{1}{C s}
$$

Hence the transfer function $E_{o}(s) / E_{i}(s)$ can be found as follows:

$$
\frac{E_{o}(s)}{E_{i}(s)}=\frac{\frac{1}{C s}}{L s+R+\frac{1}{C s}}=\frac{1}{L C s^{2}+R C s+1}
$$

which is, of course, identical to Equation (3-26).

Figure 3-9
Electrical circuits.

(a)

(b)

Consider again the system shown in Figure 3-8. Obtain the transfer function $E_{o}(s) / E_{i}(s)$ by use of the complex impedance approach. (Capacitors C_{1} and C_{2} are not charged initially.)

The circuit shown in Figure 3-8 can be redrawn as that shown in Figure 3-10(a), which can be further modified to Figure 3-10(b).

In the system shown in Figure 3-10(b) the current I is divided into two currents I_{1} and I_{2}. Noting that

$$
Z_{2} I_{1}=\left(Z_{3}+Z_{4}\right) I_{2}, \quad I_{1}+I_{2}=I
$$

we obtain

$$
I_{1}=\frac{Z_{3}+Z_{4}}{Z_{2}+Z_{3}+Z_{4}} I, \quad I_{2}=\frac{Z_{2}}{Z_{2}+Z_{3}+Z_{4}} I
$$

Noting that

$$
\begin{aligned}
& E_{i}(s)=Z_{1} I+Z_{2} I_{1}=\left[Z_{1}+\frac{Z_{2}\left(Z_{3}+Z_{4}\right)}{Z_{2}+Z_{3}+Z_{4}}\right] I \\
& E_{o}(s)=Z_{4} I_{2}=\frac{Z_{2} Z_{4}}{Z_{2}+Z_{3}+Z_{4}} I
\end{aligned}
$$

we obtain

$$
\frac{E_{o}(s)}{E_{i}(s)}=\frac{Z_{2} Z_{4}}{Z_{1}\left(Z_{2}+Z_{3}+Z_{4}\right)+Z_{2}\left(Z_{3}+Z_{4}\right)}
$$

Substituting $Z_{1}=R_{1}, Z_{2}=1 /\left(C_{1} s\right), Z_{3}=R_{2}$, and $Z_{4}=1 /\left(C_{2} s\right)$ into this last equation, we get

$$
\begin{aligned}
\frac{E_{o}(s)}{E_{i}(s)} & =\frac{\frac{1}{C_{1} s} \frac{1}{C_{2} s}}{R_{1}\left(\frac{1}{C_{1} s}+R_{2}+\frac{1}{C_{2} s}\right)+\frac{1}{C_{1} s}\left(R_{2}+\frac{1}{C_{2} s}\right)} \\
& =\frac{1}{R_{1} C_{1} R_{2} C_{2} s^{2}+\left(R_{1} C_{1}+R_{2} C_{2}+R_{1} C_{2}\right) s+1}
\end{aligned}
$$

which is the same as that given by Equation (3-33).

Figure 3-10
(a) The circuit of Figure 3-8 shown in terms of impedances; (b) equivalent circuit diagram.

(a)

(b)

Figure 3-11
(a) System consisting of two nonloading cascaded elements; (b) an equivalent system.

Transfer Functions of Nonloading Cascaded Elements. The transfer function of a system consisting of two nonloading cascaded elements can be obtained by eliminating the intermediate input and output. For example, consider the system shown in Figure 3-11(a). The transfer functions of the elements are

$$
G_{1}(s)=\frac{X_{2}(s)}{X_{1}(s)} \quad \text { and } \quad G_{2}(s)=\frac{X_{3}(s)}{X_{2}(s)}
$$

If the input impedance of the second element is infinite, the output of the first element is not affected by connecting it to the second element. Then the transfer function of the whole system becomes

$$
G(s)=\frac{X_{3}(s)}{X_{1}(s)}=\frac{X_{2}(s) X_{3}(s)}{X_{1}(s) X_{2}(s)}=G_{1}(s) G_{2}(s)
$$

The transfer function of the whole system is thus the product of the transfer functions of the individual elements. This is shown in Figure 3-11(b).

As an example, consider the system shown in Figure 3-12. The insertion of an isolating amplifier between the circuits to obtain nonloading characteristics is frequently used in combining circuits. Since amplifiers have very high input impedances, an isolation amplifier inserted between the two circuits justifies the nonloading assumption.

The two simple $R C$ circuits, isolated by an amplifier as shown in Figure 3-12, have negligible loading effects, and the transfer function of the entire circuit equals the product of the individual transfer functions. Thus, in this case,

$$
\begin{aligned}
\frac{E_{o}(s)}{E_{i}(s)} & =\left(\frac{1}{R_{1} C_{1} s+1}\right)(K)\left(\frac{1}{R_{2} C_{2} s+1}\right) \\
& =\frac{K}{\left(R_{1} C_{1} s+1\right)\left(R_{2} C_{2} s+1\right)}
\end{aligned}
$$

Electronic Controllers. In what follows we shall discuss electronic controllers using operational amplifiers. We begin by deriving the transfer functions of simple operationalamplifier circuits. Then we derive the transfer functions of some of the operational-amplifier controllers. Finally, we give operational-amplifier controllers and their transfer functions in the form of a table.

Figure 3-12
Electrical system.

Figure 3-13
Operational amplifier.

Operational Amplifiers. Operational amplifiers, often called op amps, are frequently used to amplify signals in sensor circuits. Op amps are also frequently used in filters used for compensation purposes. Figure 3-13 shows an op amp. It is a common practice to choose the ground as 0 volt and measure the input voltages e_{1} and e_{2} relative to the ground. The input e_{1} to the minus terminal of the amplifier is inverted, and the input e_{2} to the plus terminal is not inverted. The total input to the amplifier thus becomes $e_{2}-e_{1}$. Hence, for the circuit shown in Figure 3-13, we have

$$
e_{o}=K\left(e_{2}-e_{1}\right)=-K\left(e_{1}-e_{2}\right)
$$

where the inputs e_{1} and e_{2} may be dc or ac signals and K is the differential gain (voltage gain). The magnitude of K is approximately $10^{5} \sim 10^{6}$ for dc signals and ac signals with frequencies less than approximately 10 Hz . (The differential gain K decreases with the signal frequency and becomes about unity for frequencies of $1 \mathrm{MHz} \sim 50 \mathrm{MHz}$.) Note that the op amp amplifies the difference in voltages e_{1} and e_{2}. Such an amplifier is commonly called a differential amplifier. Since the gain of the op amp is very high, it is necessary to have a negative feedback from the output to the input to make the amplifier stable. (The feedback is made from the output to the inverted input so that the feedback is a negative feedback.)

In the ideal op amp, no current flows into the input terminals, and the output voltage is not affected by the load connected to the output terminal. In other words, the input impedance is infinity and the output impedance is zero. In an actual op amp, a very small (almost negligible) current flows into an input terminal and the output cannot be loaded too much. In our analysis here, we make the assumption that the op amps are ideal.

Inverting Amplifier. Consider the operational-amplifier circuit shown in Figure 3-14. Let us obtain the output voltage e_{o}.

Figure 3-14
Inverting amplifier.

The equation for this circuit can be obtained as follows: Define

$$
i_{1}=\frac{e_{i}-e^{\prime}}{R_{1}}, \quad i_{2}=\frac{e^{\prime}-e_{o}}{R_{2}}
$$

Since only a negligible current flows into the amplifier, the current i_{1} must be equal to current i_{2}. Thus

$$
\frac{e_{i}-e^{\prime}}{R_{1}}=\frac{e^{\prime}-e_{o}}{R_{2}}
$$

Since $K\left(0-e^{\prime}\right)=e_{0}$ and $K \gg 1, e^{\prime}$ must be almost zero, or $e^{\prime} \doteqdot 0$. Hence we have

$$
\frac{e_{i}}{R_{1}}=\frac{-e_{o}}{R_{2}}
$$

or

$$
e_{o}=-\frac{R_{2}}{R_{1}} e_{i}
$$

Thus the circuit shown is an inverting amplifier. If $R_{1}=R_{2}$, then the op-amp circuit shown acts as a sign inverter.

Noninverting Amplifier. Figure 3-15(a) shows a noninverting amplifier. A circuit equivalent to this one is shown in Figure 3-15(b). For the circuit of Figure 3-15(b), we have

$$
e_{o}=K\left(e_{i}-\frac{R_{1}}{R_{1}+R_{2}} e_{o}\right)
$$

where K is the differential gain of the amplifier. From this last equation, we get

$$
e_{i}=\left(\frac{R_{1}}{R_{1}+R_{2}}+\frac{1}{K}\right) e_{o}
$$

Since $K \gg 1$, if $R_{1} /\left(R_{1}+R_{2}\right) \gg 1 / K$, then

$$
e_{o}=\left(1+\frac{R_{2}}{R_{1}}\right) e_{i}
$$

This equation gives the output voltage e_{o}. Since e_{o} and e_{i} have the same signs, the op-amp circuit shown in Figure 3-15(a) is noninverting.

Figure 3-15
(a) Noninverting operational amplifier; (b) equivalent circuit.

(a)

(b)

Figure 3-16 shows an electrical circuit involving an operational amplifier. Obtain the output e_{o}. Let us define

$$
i_{1}=\frac{e_{i}-e^{\prime}}{R_{1}}, \quad i_{2}=C \frac{d\left(e^{\prime}-e_{o}\right)}{d t}, \quad i_{3}=\frac{e^{\prime}-e_{o}}{R_{2}}
$$

Noting that the current flowing into the amplifier is negligible, we have

$$
i_{1}=i_{2}+i_{3}
$$

Hence

$$
\frac{e_{i}-e^{\prime}}{R_{1}}=C \frac{d\left(e^{\prime}-e_{o}\right)}{d t}+\frac{e^{\prime}-e_{o}}{R_{2}}
$$

Since $e^{\prime} \doteqdot 0$, we have

$$
\frac{e_{i}}{R_{1}}=-C \frac{d e_{o}}{d t}-\frac{e_{o}}{R_{2}}
$$

Taking the Laplace transform of this last equation, assuming the zero initial condition, we have

$$
\frac{E_{i}(s)}{R_{1}}=-\frac{R_{2} C s+1}{R_{2}} E_{o}(s)
$$

which can be written as

$$
\frac{E_{o}(s)}{E_{i}(s)}=-\frac{R_{2}}{R_{1}} \frac{1}{R_{2} C s+1}
$$

The op-amp circuit shown in Figure 3-16 is a first-order lag circuit. (Several other circuits involving op amps are shown in Table 3-1 together with their transfer functions. Table 3-1 is given on page 85.)

Figure 3-16
First-order lag circuit using operational amplifier.

Figure 3-17
Operationalamplifier circuit.

Impedance Approach to Obtaining Transfer Functions. Consider the op-amp circuit shown in Figure 3-17. Similar to the case of electrical circuits we discussed earlier, the impedance approach can be applied to op-amp circuits to obtain their transfer functions. For the circuit shown in Figure 3-17, we have

$$
\frac{E_{i}(s)-E^{\prime}(s)}{Z_{1}}=\frac{E^{\prime}(s)-E_{o}(s)}{Z_{2}}
$$

Since $E^{\prime}(s) \doteqdot 0$, we have

$$
\begin{equation*}
\frac{E_{o}(s)}{E_{i}(s)}=-\frac{Z_{2}(s)}{Z_{1}(s)} \tag{3-34}
\end{equation*}
$$

EXAMPLE 3-9 Referring to the op-amp circuit shown in Figure 3-16, obtain the transfer function $E_{o}(s) / E_{i}(s)$ by use of the impedance approach.

The complex impedances $Z_{1}(s)$ and $Z_{2}(s)$ for this circuit are

$$
Z_{1}(s)=R_{1} \quad \text { and } \quad Z_{2}(s)=\frac{1}{C s+\frac{1}{R_{2}}}=\frac{R_{2}}{R_{2} C s+1}
$$

The transfer function $E_{o}(s) / E_{i}(s)$ is, therefore, obtained as

$$
\frac{E_{o}(s)}{E_{i}(s)}=-\frac{Z_{2}(s)}{Z_{1}(s)}=-\frac{R_{2}}{R_{1}} \frac{1}{R_{2} C s+1}
$$

which is, of course, the same as that obtained in Example 3-8.

Lead or Lag Networks Using Operational Amplifiers. Figure 3-18(a) shows an electronic circuit using an operational amplifier. The transfer function for this circuit can be obtained as follows: Define the input impedance and feedback impedance as Z_{1} and Z_{2}, respectively. Then

$$
Z_{1}=\frac{R_{1}}{R_{1} C_{1} s+1}, \quad Z_{2}=\frac{R_{2}}{R_{2} C_{2} s+1}
$$

Hence, referring to Equation (3-34), we have

$$
\begin{equation*}
\frac{E(s)}{E_{i}(s)}=-\frac{Z_{2}}{Z_{1}}=-\frac{R_{2}}{R_{1}} \frac{R_{1} C_{1} s+1}{R_{2} C_{2} s+1}=-\frac{C_{1}}{C_{2}} \frac{s+\frac{1}{R_{1} C_{1}}}{s+\frac{1}{R_{2} C_{2}}} \tag{3-35}
\end{equation*}
$$

Notice that the transfer function in Equation (3-35) contains a minus sign. Thus, this circuit is sign inverting. If such a sign inversion is not convenient in the actual application, a sign inverter may be connected to either the input or the output of the circuit of Figure 3-18(a). An example is shown in Figure 3-18(b). The sign inverter has the transfer function of

$$
\frac{E_{o}(s)}{E(s)}=-\frac{R_{4}}{R_{3}}
$$

The sign inverter has the gain of $-R_{4} / R_{3}$. Hence the network shown in Figure 3-18(b) has the following transfer function:

$$
\begin{align*}
\frac{E_{o}(s)}{E_{i}(s)} & =\frac{R_{2} R_{4}}{R_{1} R_{3}} \frac{R_{1} C_{1} s+1}{R_{2} C_{2} s+1}=\frac{R_{4} C_{1}}{R_{3} C_{2}} \frac{s+\frac{1}{R_{1} C_{1}}}{s+\frac{1}{R_{2} C_{2}}} \\
& =K_{c} \alpha \frac{T s+1}{\alpha T s+1}=K_{c} \frac{s+\frac{1}{T}}{s+\frac{1}{\alpha T}} \tag{3-36}
\end{align*}
$$

(a)

(b)

Figure 3-18

(a) Operational-amplifier circuit; (b) operational-amplifier circuit used as a lead or lag compensator.
where

$$
T=R_{1} C_{1}, \quad \alpha T=R_{2} C_{2}, \quad K_{c}=\frac{R_{4} C_{1}}{R_{3} C_{2}}
$$

Notice that

$$
K_{c} \alpha=\frac{R_{4} C_{1}}{R_{3} C_{2}} \frac{R_{2} C_{2}}{R_{1} C_{1}}=\frac{R_{2} R_{4}}{R_{1} R_{3}}, \quad \alpha=\frac{R_{2} C_{2}}{R_{1} C_{1}}
$$

This network has a dc gain of $K_{c} \alpha=R_{2} R_{4} /\left(R_{1} R_{3}\right)$.
Note that this network, whose transfer function is given by Equation (3-36), is a lead network if $R_{1} C_{1}>R_{2} C_{2}$, or $\alpha<1$. It is a lag network if $R_{1} C_{1}<R_{2} C_{2}$.

PID Controller Using Operational Amplifiers. Figure 3-19 shows an electronic proportional-plus-integral-plus-derivative controller (a PID controller) using operational amplifiers. The transfer function $E(s) / E_{i}(s)$ is given by

$$
\frac{E(s)}{E_{i}(s)}=-\frac{Z_{2}}{Z_{1}}
$$

where

$$
Z_{1}=\frac{R_{1}}{R_{1} C_{1} s+1}, \quad Z_{2}=\frac{R_{2} C_{2} s+1}{C_{2} s}
$$

Thus

$$
\frac{E(s)}{E_{i}(s)}=-\left(\frac{R_{2} C_{2} s+1}{C_{2} s}\right)\left(\frac{R_{1} C_{1} s+1}{R_{1}}\right)
$$

Noting that

$$
\frac{E_{o}(s)}{E(s)}=-\frac{R_{4}}{R_{3}}
$$

Figure 3-19
Electronic PID controller.

