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In terms of vector-matrix equations, we have

(3–22)

(3–23)

Equations (3–22) and (3–23) give a state-space representation of the inverted-pendulum system.
(Note that state-space representation of the system is not unique. There are infinitely many such
representations for this system.)
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3–3 MATHEMATICAL MODELING OF ELECTRICAL SYSTEMS

Basic laws governing electrical circuits are Kirchhoff’s current law and voltage law.
Kirchhoff’s current law (node law) states that the algebraic sum of all currents entering and
leaving a node is zero. (This law can also be stated as follows: The sum of currents enter-
ing a node is equal to the sum of currents leaving the same node.) Kirchhoff’s voltage law
(loop law) states that at any given instant the algebraic sum of the voltages around any loop
in an electrical circuit is zero. (This law can also be stated as follows:The sum of the volt-
age drops is equal to the sum of the voltage rises around a loop.) A mathematical model
of an electrical circuit can be obtained by applying one or both of Kirchhoff’s laws to it.

This section first deals with simple electrical circuits and then treats mathematical
modeling of operational amplifier systems.

LRC Circuit. Consider the electrical circuit shown in Figure 3–7. The circuit con-
sists of an inductance L (henry), a resistance R (ohm), and a capacitance C (farad).
Applying Kirchhoff’s voltage law to the system, we obtain the following equations:

(3–24)

(3–25) 
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iFigure 3–7
Electrical circuit.
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Equations (3–24) and (3–25) give a mathematical model of the circuit.
A transfer-function model of the circuit can also be obtained as follows: Taking the

Laplace transforms of Equations (3–24) and (3–25), assuming zero initial conditions,
we obtain

If ei is assumed to be the input and eo the output, then the transfer function of this system
is found to be

(3–26)

A state-space model of the system shown in Figure 3–7 may be obtained as follows: First,
note that the differential equation for the system can be obtained from Equation (3–26) as

Then by defining state variables by

and the input and output variables by

we obtain

and

These two equations give a mathematical model of the system in state space.

Transfer Functions of Cascaded Elements. Many feedback systems have com-
ponents that load each other. Consider the system shown in Figure 3–8. Assume that ei

is the input and eo is the output. The capacitances C1 and C2 are not charged initially.
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It will be shown that the second stage of the circuit (R2C2 portion) produces a loading
effect on the first stage (R1C1 portion). The equations for this system are

(3–27)

and

(3–28)

(3–29)

Taking the Laplace transforms of Equations (3–27) through (3–29), respectively, using
zero initial conditions, we obtain

(3–30)

(3–31)

(3–32)

Eliminating I1(s) from Equations (3–30) and (3–31) and writing Ei(s) in terms of I2(s),
we find the transfer function between Eo(s) and Ei(s) to be

(3–33)

The term R1C2s in the denominator of the transfer function represents the interaction
of two simple RC circuits. Since the two roots
of the denominator of Equation (3–33) are real.

The present analysis shows that, if two RC circuits are connected in cascade so
that the output from the first circuit is the input to the second, the overall transfer
function is not the product of and The reason for this
is that, when we derive the transfer function for an isolated circuit, we implicitly as-
sume that the output is unloaded. In other words, the load impedance is assumed to
be infinite, which means that no power is being withdrawn at the output.When the sec-
ond circuit is connected to the output of the first, however, a certain amount of power
is withdrawn, and thus the assumption of no loading is violated.Therefore, if the trans-
fer function of this system is obtained under the assumption of no loading, then it is
not valid. The degree of the loading effect determines the amount of modification of
the transfer function.
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Complex Impedances. In deriving transfer functions for electrical circuits, we
frequently find it convenient to write the Laplace-transformed equations directly,
without writing the differential equations. Consider the system shown in Figure 3–9(a).
In this system, Z1 and Z2 represent complex impedances. The complex impedance 
Z(s) of a two-terminal circuit is the ratio of E(s), the Laplace transform of the 
voltage across the terminals, to I(s), the Laplace transform of the current through 
the element, under the assumption that the initial conditions are zero, so that
Z(s)=E(s)/I(s). If the two-terminal element is a resistance R, capacitance C, or
inductance L, then the complex impedance is given by R, 1/Cs, or Ls, respectively. If
complex impedances are connected in series, the total impedance is the sum of the
individual complex impedances.

Remember that the impedance approach is valid only if the initial conditions
involved are all zeros. Since the transfer function requires zero initial conditions, the
impedance approach can be applied to obtain the transfer function of the electrical
circuit. This approach greatly simplifies the derivation of transfer functions of elec-
trical circuits.

Consider the circuit shown in Figure 3–9(b).Assume that the voltages ei and eo are
the input and output of the circuit, respectively. Then the transfer function of this
circuit is

For the system shown in Figure 3–7,

Hence the transfer function Eo(s)/Ei(s) can be found as follows:

which is, of course, identical to Equation (3–26).
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EXAMPLE 3–7 Consider again the system shown in Figure 3–8. Obtain the transfer function Eo(s)/Ei(s) by use
of the complex impedance approach. (Capacitors C1 and C2 are not charged initially.)

The circuit shown in Figure 3–8 can be redrawn as that shown in Figure 3–10(a), which can be
further modified to Figure 3–10(b).

In the system shown in Figure 3–10(b) the current I is divided into two currents I1 and I2.
Noting that

we obtain

Noting that

we obtain

Substituting Z1=R1, Z2=1/ AC1s B , Z3=R2, and Z4=1/ AC2s B into this last equation, we get

which is the same as that given by Equation (3–33).
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Transfer Functions of Nonloading Cascaded Elements. The transfer function
of a system consisting of two nonloading cascaded elements can be obtained by elimi-
nating the intermediate input and output. For example, consider the system shown in
Figure 3–11(a). The transfer functions of the elements are

and

If the input impedance of the second element is infinite, the output of the first element is
not affected by connecting it to the second element.Then the transfer function of the whole
system becomes

The transfer function of the whole system is thus the product of the transfer functions
of the individual elements. This is shown in Figure 3–11(b).

As an example, consider the system shown in Figure 3–12.The insertion of an isolating
amplifier between the circuits to obtain nonloading characteristics is frequently used in
combining circuits. Since amplifiers have very high input impedances, an isolation
amplifier inserted between the two circuits justifies the nonloading assumption.

The two simple RC circuits, isolated by an amplifier as shown in Figure 3–12, have
negligible loading effects, and the transfer function of the entire circuit equals the prod-
uct of the individual transfer functions. Thus, in this case,

Electronic Controllers. In what follows we shall discuss electronic controllers using
operational amplifiers.We begin by deriving the transfer functions of simple operational-
amplifier circuits.Then we derive the transfer functions of some of the operational-amplifier
controllers. Finally, we give operational-amplifier controllers and their transfer functions in
the form of a table.
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Operational Amplifiers. Operational amplifiers, often called op amps, are
frequently used to amplify signals in sensor circuits. Op amps are also frequently used
in filters used for compensation purposes. Figure 3–13 shows an op amp. It is a common
practice to choose the ground as 0 volt and measure the input voltages e1 and e2 relative
to the ground. The input e1 to the minus terminal of the amplifier is inverted, and the
input e2 to the plus terminal is not inverted.The total input to the amplifier thus becomes
e2-e1. Hence, for the circuit shown in Figure 3–13, we have

where the inputs e1 and e2 may be dc or ac signals and K is the differential gain (volt-
age gain). The magnitude of K is approximately 105 ~ 106 for dc signals and ac signals
with frequencies less than approximately 10 Hz. (The differential gain K decreases with
the signal frequency and becomes about unity for frequencies of 1 MHz ~ 50 MHz.)
Note that the op amp amplifies the difference in voltages e1 and e2. Such an amplifier is
commonly called a differential amplifier. Since the gain of the op amp is very high, it is
necessary to have a negative feedback from the output to the input to make the ampli-
fier stable. (The feedback is made from the output to the inverted input so that the feed-
back is a negative feedback.)

In the ideal op amp, no current flows into the input terminals, and the output volt-
age is not affected by the load connected to the output terminal. In other words, the
input impedance is infinity and the output impedance is zero. In an actual op amp, a
very small (almost negligible) current flows into an input terminal and the output can-
not be loaded too much. In our analysis here, we make the assumption that the op amps
are ideal.

Inverting Amplifier. Consider the operational-amplifier circuit shown in Figure 3–14.
Let us obtain the output voltage eo.

eo = KAe2 - e1B = -KAe1 - e2B

ei eo
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R1i1
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e9

Figure 3–14
Inverting amplifier.
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The equation for this circuit can be obtained as follows: Define

Since only a negligible current flows into the amplifier, the current i1 must be equal to
current i2 . Thus

Since and e¿ must be almost zero, or Hence we have

or

Thus the circuit shown is an inverting amplifier. If R1=R2 , then the op-amp circuit
shown acts as a sign inverter.

Noninverting Amplifier. Figure 3–15(a) shows a noninverting amplifier.A circuit
equivalent to this one is shown in Figure 3–15(b). For the circuit of Figure 3–15(b), we
have

where K is the differential gain of the amplifier. From this last equation, we get

Since if then

This equation gives the output voltage eo. Since eo and ei have the same signs, the op-amp
circuit shown in Figure 3–15(a) is noninverting.
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EXAMPLE 3–8 Figure 3–16 shows an electrical circuit involving an operational amplifier. Obtain the output eo.
Let us define

Noting that the current flowing into the amplifier is negligible, we have

Hence

Since we have

Taking the Laplace transform of this last equation, assuming the zero initial condition, we have

which can be written as

The op-amp circuit shown in Figure 3–16 is a first-order lag circuit. (Several other circuits involving
op amps are shown in Table 3–1 together with their transfer functions. Table 3–1 is given on
page 85.)
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using operational
amplifier.
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Impedance Approach to Obtaining Transfer Functions. Consider the op-amp
circuit shown in Figure 3–17. Similar to the case of electrical circuits we discussed ear-
lier, the impedance approach can be applied to op-amp circuits to obtain their transfer
functions. For the circuit shown in Figure 3–17, we have

Since we have

(3–34)
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Figure 3–17
Operational-
amplifier circuit.

EXAMPLE 3–9 Referring to the op-amp circuit shown in Figure 3–16, obtain the transfer function Eo(s)/Ei(s) by
use of the impedance approach.

The complex impedances Z1(s) and Z2(s) for this circuit are

and

The transfer function Eo(s)/Ei(s) is, therefore, obtained as

which is, of course, the same as that obtained in Example 3-8.
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Lead or Lag Networks Using Operational Amplifiers. Figure 3–18(a) shows an
electronic circuit using an operational amplifier. The transfer function for this circuit
can be obtained as follows: Define the input impedance and feedback impedance as Z1

and Z2, respectively. Then

Hence, referring to Equation (3–34), we have

(3–35)

Notice that the transfer function in Equation (3–35) contains a minus sign.Thus, this circuit
is sign inverting. If such a sign inversion is not convenient in the actual application, a sign
inverter may be connected to either the input or the output of the circuit of Figure 3–18(a).
An example is shown in Figure 3–18(b).The sign inverter has the transfer function of

The sign inverter has the gain of Hence the network shown in Figure 3–18(b)
has the following transfer function:
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(a) Operational-amplifier circuit; (b) operational-amplifier circuit used as a lead or lag compensator.



where

Notice that

This network has a dc gain of 
Note that this network, whose transfer function is given by Equation (3–36), is a lead

network if or a<1. It is a lag network if 

PID Controller Using Operational Amplifiers. Figure 3–19 shows an electronic
proportional-plus-integral-plus-derivative controller (a PID controller) using opera-
tional amplifiers. The transfer function is given by

where

Thus

Noting that
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Figure 3–19
Electronic PID
controller.


