
Computer Skills & Programming II Dr. Shaymah Akram

Lecture 1: Introduction to C++

• C++ is a compiler-based language. That is C++ programs used to

be compiled and their executable file is used to run it. Due to
which C++ is a relatively faster language than Java and Python.

• C++ allows us to allocate the memory of a variable or an array in
run time. This is known as Dynamic Memory Allocation.

• C++ is a case-sensitive programming language.

C++ Program Structure
Let us look at a simple code that would print the words Hello World.

#include <iostream>
using namespace std;
// main() is where program execution begins.
int main() {
 cout << "Hello World"; // prints Hello World
 return 0;
}

Let us look at the various parts of the above program −

• The C++ language defines several headers, which contain

information that is either necessary or useful to your program. For

this program, the header <iostream> is needed.

• The line int main() is the main function where program execution

begins.

Computer Skills & Programming II Dr. Shaymah Akram

• The next line cout << "Hello World"; causes the message "Hello

World" to be displayed on the screen.

• The next line return 0; terminates main() function and causes it to

return the value 0 to the calling process.

C++ Variables

Variables are containers for storing data values.

In C++, there are different types of variables (defined with different

keywords), for example:

Basic Data Types

The data type specifies the size and type of information the variable will

store:

Data
Type

Description

int Stores whole numbers, without decimals

float Stores fractional numbers, containing one or more
decimals. Sufficient for storing 7 decimal digits

double Stores fractional numbers, containing one or more
decimals. Sufficient for storing 15 decimal digits

boolean Stores true or false values

char Stores a single character/letter/number, or ASCII values

string Stores text, such as "Hello World". String values are
surrounded by double quotes

Declaring (Creating) Variables

To create a variable, you must specify the type and assign it a value:

Computer Skills & Programming II Dr. Shaymah Akram

Syntax

type variable = value;

Example

int myNum = 5; // Integer (whole number without

decimals)

double myFloatNum = 5.99; // Floating point number (with

decimals)

char myLetter = 'D'; // Character

string myText = "Hello"; // String (text)

bool myBoolean = true; // Boolean (true or false)

Example

Create a variable called myNum of type int and assign it the value 15:

int myNum = 15;

cout << myNum;

int myNum;

myNum = 15;

cout << myNum;

Example

int x = 5;

int y = 6;

int sum = x + y;

cout << sum;

Declare Many Variables

To declare more than one variable of the same type, use a comma-

separated list:

Example

int x = 5, y = 6, z = 50;

cout << x + y + z;

Computer Skills & Programming II Dr. Shaymah Akram

C++ Identifiers

All C++ variables must be identified with unique names.

These unique names are called identifiers.

Identifiers can be short names (like x and y) or more descriptive names

(age, sum, totalVolume).

Note: It is recommended to use descriptive names in order to create

understandable and maintainable code:

The general rules for constructing names for variables (unique identifiers)

are:

• Names can contain letters, digits and underscores

• Names must begin with a letter or an underscore (_)
• Names are case sensitive (myVar and myvar are different variables)

• Names cannot contain whitespaces or special characters like !, #,
%, etc.

• Reserved words (like C++ keywords, such as int) cannot be used

as names.

Example

// Good

int minutesPerHour = 60;

// OK, but not so easy to understand what m actually is

int m = 60;

Constants

When you do not want others (or yourself) to override existing variable
values, use the const keyword (this will declare the variable as

"constant", which means unchangeable and read-only):

Example

const int myNum = 15; // myNum will always be 15

myNum = 10; // error: assignment of read-only variable 'myNum'

const int minutesPerHour = 60;
const float PI = 3.14;

Computer Skills & Programming II Dr. Shaymah Akram

C++ User Input

You have already learned that cout is used to output (print) values. Now

we will use cin to get user input.

cin is a predefined variable that reads data from the keyboard with the

extraction operator (>>).

In the following example, the user can input a number, which is stored in

the variable x. Then we print the value of x:

Example

int x;

cout << "Type a number: "; // Type a number and press enter

cin >> x; // Get user input from the keyboard

cout << "Your number is: " << x; // Display the input value

C++ Operators

C++ divides the operators into the following groups:

• Arithmetic operators
• Assignment operators

• Comparison operators

• Logical operators

Arithmetic Operators

Arithmetic operators are used to perform common mathematical

operations.

Operator Name Description Example

+ Addition Adds together two values x + y

- Subtraction Subtracts one value from

another

x - y

* Multiplication Multiplies two values x * y

/ Division Divides one value by
another

x / y

Computer Skills & Programming II Dr. Shaymah Akram

% Modulus Returns the division
remainder

x % y

++ Increment Increases the value of a
variable by 1

++x

-- Decrement Decreases the value of a
variable by 1

--x

Assignment Operators

Assignment operators are used to assign values to variables.

In the example below, we use the assignment operator (=) to assign the

value 10 to a variable called x:

The addition assignment operator (+=) adds a value to a variable:

Example

int x = 10;

x += 5;

A list of all assignment operators:

Operator Example Same As

= x = 5 x = 5

+= x += 3 x = x + 3

-= x -= 3 x = x - 3

*= x *= 3 x = x * 3

/= x /= 3 x = x / 3

%= x %= 3 x = x % 3

&= x &= 3 x = x & 3

|= x |= 3 x = x | 3

Computer Skills & Programming II Dr. Shaymah Akram

^= x ^= 3 x = x ^ 3

>>= x >>= 3 x = x >> 3

<<= x <<= 3 x = x << 3

Comparison Operators

Comparison operators are used to compare two values.

Note: The return value of a comparison is either true (1) or false (0).

A list of all comparison operators:

Operator Name Example

== Equal to x == y

!= Not equal x != y

> Greater than x > y

< Less than x < y

>= Greater than or equal to x >= y

<= Less than or equal to x <= y

In the following example, we use the greater than operator (>) to find

out if 5 is greater than 3:

Example

int x = 5;

int y = 3;

cout << (x > y); // returns 1 (true) because 5 is greater than 3

Logical Operators

Logical operators are used to determine the logic between variables or

values:

Operator Name Description Example

Computer Skills & Programming II Dr. Shaymah Akram

&& Logical
and

Returns true if both
statements are true

x < 5 && x < 10

|| Logical
or

Returns true if one of the
statements is true

x < 5 || x < 4

! Logical
not

Reverse the result, returns
false if the result is true

!(x < 5 && x < 10)

C++ Conditions and If Statements

The if Statement

Use the if statement to specify a block of C++ code to be executed if a

condition is true.

Syntax

if (condition) {

 // block of code to be executed if the condition is true

}

Example

int x = 20;

int y = 18;

if (x > y) {

 cout << "x is greater than y";

}

The else Statement

Use the else statement to specify a block of code to be executed if the

condition is false.

Computer Skills & Programming II Dr. Shaymah Akram

Syntax

if (condition) {

 // block of code to be executed if the condition is true

} else {

 // block of code to be executed if the condition is false

}

Example

int time = 20;

if (time < 18) {

 cout << "Good day.";

} else {

 cout << "Good evening.";

}

// Outputs "Good evening."

The else if Statement

Use the else if statement to specify a new condition if the first condition

is false.

Syntax

if (condition1) {

 // block of code to be executed if condition1 is true

} else if (condition2) {

 // block of code to be executed if the condition1 is false and

condition2 is true

} else {

 // block of code to be executed if the condition1 is false and

condition2 is false

}

Example

int time = 22;

if (time < 10) {

 cout << "Good morning.";

} else if (time < 20) {

 cout << "Good day.";

} else {

 cout << "Good evening.";

}

// Outputs "Good evening."

Computer Skills & Programming II Dr. Shaymah Akram

C++ Switch Statements

Use the switch statement to select one of many code blocks to be

executed.

Syntax

switch(expression) {

 case x:

 // code block

 break;

 case y:

 // code block

 break;

 default:

 // code block

}

Example

int day = 4;

switch (day) {

 case 1:

 cout << "Monday";

 break;

 case 2:

 cout << "Tuesday";

 break;

 case 3:

 cout << "Wednesday";

 break;

 case 4:

 cout << "Thursday";

 break;

 case 5:

 cout << "Friday";

 break;

 case 6:

 cout << "Saturday";

 break;

 case 7:

 cout << "Sunday";

 break;

Computer Skills & Programming II Dr. Shaymah Akram

}

// Outputs "Thursday" (day 4)

The break Keyword

When C++ reaches a break keyword, it breaks out of the switch block.

This will stop the execution of more code and case testing inside the

block.

When a match is found, and the job is done, it's time for a break. There is

no need for more testing.

Example

int day = 4;

switch (day) {

 case 6:

 cout << "Today is Saturday";

 break;

 case 7:

 cout << "Today is Sunday";

 break;

 default:

 cout << "Looking forward to the Weekend";

}

// Outputs "Looking forward to the Weekend"

The default Keyword

The default keyword specifies some code to run if there is no case match.

C++ Loops

Loops can execute a block of code as long as a specified condition is

reached.

Loops are handy because they save time, reduce errors, and they make

code more readable.

No Loop Type & Description

Computer Skills & Programming II Dr. Shaymah Akram

1 while loop

Repeats a statement or group of statements while a given condition

is true. It tests the condition before executing the loop body.

2 for loop

Execute a sequence of statements multiple times and abbreviates

the code that manages the loop variable.

3 do...while loop

Like a ‘while’ statement, except that it tests the condition at the

end of the loop body.

4 nested loops

You can use one or more loop inside any another ‘while’, ‘for’ or

‘do..while’ loop.

C++ While Loop

The while loop loops through a block of code as long as a specified

condition is true:

Computer Skills & Programming II Dr. Shaymah Akram

Syntax

while (condition) {

 // code block to be executed

}

Example

int i = 0;

while (i < 5) {

 cout << i << "\n";

 i++;

}

The Do/While Loop

The do/while loop is a variant of the while loop. This loop will execute the

code block once, before checking if the condition is true, then it will

repeat the loop as long as the condition is true.

Computer Skills & Programming II Dr. Shaymah Akram

Syntax

do {

 // code block to be executed

}

while (condition);

The example below uses a do/while loop. The loop will always be executed

at least once, even if the condition is false, because the code block is
executed before the condition is tested:

Example

int i = 0;

do {

 cout << i << "\n";

 i++;

}

while (i < 5);

C++ For Loop

When you know exactly how many times you want to loop through a

block of code, use the for loop instead of a while loop:

Computer Skills & Programming II Dr. Shaymah Akram

Syntax

for (statement 1; statement 2; statement 3) {

 // code block to be executed

}

Statement 1 is executed (one time) before the execution of the code
block.

Statement 2 defines the condition for executing the code block.

Statement 3 is executed (every time) after the code block has been

executed.

The example below will print the numbers 0 to 4:

Example

for (int i = 0; i < 5; i++) {

 cout << i << "\n";

}

Computer Skills & Programming II Dr. Shaymah Akram

Example explained

Statement 1 sets a variable before the loop starts (int i = 0).

Statement 2 defines the condition for the loop to run (i must be less
than 5). If the condition is true, the loop will start over again, if it is false,

the loop will end.

Statement 3 increases a value (i++) each time the code block in the

loop has been executed.

Example

for (int i = 0; i <= 10; i = i + 2) {

 cout << i << "\n";

}

C++ nested loops

Syntax

The syntax for a nested for loop statement in C++ is as follows

for (init; condition; increment) {

 for (init; condition; increment) {

 statement(s);

 }

 statement(s); // you can put more statements.

}

The syntax for a nested while loop statement in C++ is as follows −

while(condition) {

 while(condition) {

 statement(s);

 }

 statement(s); // you can put more statements.

}

Computer Skills & Programming II Dr. Shaymah Akram

The syntax for a nested do...while loop statement in C++ is as follows −

do {

 statement(s); // you can put more statements.

 do {

 statement(s);

 } while(condition);

} while(condition);

Example

The following program uses a nested for loop to find the prime numbers from 2 to

100

#include <iostream>
using namespace std;

int main () {
 int i, j;

 for(i = 2; i<100; i++) {
 for(j = 2; j <= (i/j); j++)
 if(!(i%j)) break; // if factor found, not prime
 if(j > (i/j)) cout << i << " is prime\n";
 }

 return 0;
}

