
Computer Skills & Programming II Dr. Shayma Akram

1

Lecture 2
Arrays, Pointers and References in C++

C++ Arrays

Arrays are used to store multiple values in a single variable, instead of

declaring separate variables for each value.

Declare an array

To declare an array, define the variable type, specify the name of the

array followed by square brackets and specify the number of elements it

should store.

Syntax

type arrayName [arraySize];

Example

string cars[4];

We have now declared a variable that holds an array of four strings. To

insert values to it, we can use an array literal - place the values in a

comma-separated list, inside curly braces:

string cars[4] = {"Volvo", "BMW", "Ford", "Mazda"};

string

cars "Volvo" "BMW", "Ford" "Mazda"

Computer Skills & Programming II Dr. Shayma Akram

2

To create an array of three integers, you could write:

Example

int myNum[3] = {10, 20, 30};

int
myNum 10 20 30

Access the Elements of an Array

You access an array element by referring to the index number.

string

cars "Volvo" "BMW", "Ford" "Mazda"

index 0 1 2 3

This statement accesses the value of the first element in cars:

Example

string cars[4] = {"Volvo", "BMW", "Ford", "Mazda"};

cout << cars[0];

// Outputs Volvo

Example

string cars[4] = {"Volvo", "BMW", "Ford", "Mazda"};

cars[0] = "Opel";

cout << cars[0];

// Now outputs Opel instead of Volvo

Loop Through an Array

You can loop through the array elements with the for loop.

The following example outputs all elements in the cars array:

Computer Skills & Programming II Dr. Shayma Akram

3

Example

string cars[4] = {"Volvo", "BMW", "Ford", "Mazda"};

for(int i = 0; i < 4; i++) {

 cout << cars[i] << "\n";

}

The following example outputs the index of each element together with its

value:

Example

string cars[4] = {"Volvo", "BMW", "Ford", "Mazda"};

for(int i = 0; i < 4; i++) {

 cout << i << ": " << cars[i] << "\n";

}

Omit Array Size

You don't have to specify the size of the array. But if you don't, it will only

be as big as the elements that are inserted into it:

string cars[] = {"Volvo", "BMW", "Ford"};//size of array is always 3

This is completely fine. However, the problem arise if you want extra
space for future elements. Then you have to overwrite the existing

values:

string cars[] = {"Volvo", "BMW", "Ford"};
string cars[] = {"Volvo", "BMW", "Ford", "Mazda", "Tesla"};

If you specify the size however, the array will reserve the extra space:

string cars[5] = {"Volvo", "BMW", "Ford"}; // size of array is 5,
even though it's only three elements inside it

Now you can add a fourth and fifth element without overwriting the

others:

cars[3] = "Mazda";
cars[4] = "Tesla";

Computer Skills & Programming II Dr. Shayma Akram

4

Omit Elements on Declaration

It is also possible to declare an array without specifying the elements on

declaration, and add them later:

string cars[5];
cars[0] = "Volvo";
cars[1] = "BMW";
...

Multidimensional arrays

In C++, we can create an array of an array, known as a multidimensional

array.

Syntax

type name[size1][size2]...[sizeN];

Two-Dimensional Arrays

The simplest form of the multidimensional array is the two-dimensional array. A two-
dimensional array is, in essence, a list of one-dimensional arrays. To declare a two-
dimensional integer array of size x,y, you would write something as follows −

type arrayName [x][y];

Where type can be any valid C++ data type and arrayName will be a valid C++
identifier.

A two-dimensional array can be think as a table, which will have x number of rows
and y number of columns. A 2-dimensional array a, which contains three rows and
four columns can be shown as below −

Computer Skills & Programming II Dr. Shayma Akram

5

Example

int test[2][3] = { {2, 4, 5}, {9, 0, 19}};

Accessing Two-Dimensional Array Elements

An element in 2-dimensional array is accessed by using the subscripts, i.e., row index
and column index of the array. For example −

int val = a[2][3];

The above statement will take 4th element from the 3rd row of the array.

Example

#include <iostream>

using namespace std;

int main () {

 // an array with 5 rows and 2 columns.

 int a[5][2] = { {0,0}, {1,2}, {2,4}, {3,6},{4,8}};

 // output each array element's value

 for (int i = 0; i < 5; i++)

 for (int j = 0; j < 2; j++) {

 cout << "a[" << i << "][" << j << "]: ";

 cout << a[i][j]<< endl;

 }

 return 0;

}

Three-dimensional array

int test[2][3][4] = {

 { {3, 4, 2, 3}, {0, -3, 9, 11}, {23, 12, 23, 2} },

 { {13, 4, 56, 3}, {5, 9, 3, 5}, {5, 1, 4, 9} }

 };

Computer Skills & Programming II Dr. Shayma Akram

6

3 4 2 3 13 4 56 3

0 -3 9 11 5 9 3 5

23 12 23 2 5 1 4 9

The first dimension has the value 2. So, the two elements comprising the first
dimension are:

Element 1 = { {3, 4, 2, 3}, {0, -3, 9, 11}, {23, 12, 23, 2} }

Element 2 = { {13, 4, 56, 3}, {5, 9, 3, 5}, {5, 1, 4, 9} }

The second dimension has the value 3. Notice that each of the elements of the first
dimension has three elements each:

{3, 4, 2, 3}, {0, -3, 9, 11} and {23, 12, 23, 2} for Element 1.
{13, 4, 56, 3}, {5, 9, 3, 5} and {5, 1, 4, 9} for Element 2.

Finally, there are four int numbers inside each of the elements of the second
dimension:

Example

// C++ Program to Store value entered by user in

// three dimensional array and display it.

#include <iostream>

using namespace std;

int main() {

 // This array can store up to 12 elements (2x3x2)

 int test[2][3][2] = {

 {

 {1, 2},

 {3, 4},

 {5, 6}

 },

 {

 {7, 8},

 {9, 10},

 {11, 12}

 }

 };

 // Displaying the values with proper index.

 for (int i = 0; i < 2; ++i) {

 for (int j = 0; j < 3; ++j) {

 for (int k = 0; k < 2; ++k) {

 cout << "test[" << i << "][" << j << "][" << k << "] =

 " << test[i][j][k] << endl;

 }

 }

 }

Computer Skills & Programming II Dr. Shayma Akram

7

 return 0;

}

The basic concept of printing elements of a 3d array is similar to that of a

2d array.

However, since we are manipulating 3 dimensions, we use a nested for

loop with 3 total loops instead of just 2:

the outer loop from i == 0 to i == 1 accesses the first dimension of the

array

the middle loop from j == 0 to j == 2 accesses the second dimension of

the array

the innermost loop from k == 0 to k == 1 accesses the third

dimension of the array

As we can see, the complexity of the array increases exponentially with

the increase in dimensions.

Dealing with strings in C++

This string is a one-dimensional array of characters which is terminated

by a null character '\0'. Thus a null-terminated string contains the

characters that comprise the string followed by a null.

Example

char greeting[6] = {'H', 'e', 'l', 'l', 'o'};

If you follow the rule of array initialization, then you can write the above

statement as follows −

char greeting[] = "Hello";

The C++ compiler automatically places the '\0' at the end of the string

when it initializes the array.

Computer Skills & Programming II Dr. Shayma Akram

8

String Concatenation

The + operator can be used between strings to add them together to

make a new string. This is called concatenation:

Example

string firstName = "John";

string lastName = "Doe";

string fullName = firstName + " " + lastName;

cout << fullName;

C++ Pointers

In C++, pointers are variables that store the memory addresses of

other variables.

Declaring pointers

Synax

type* name;

where type is the data type pointed to by the pointer. This type is not the

type of the pointer itself, but the type of the data the pointer points to.

A pointer variable points to a data type (like int or string) of the same

type, and is created with the * operator. The address of the variable

you're working with is assigned to the pointer.

Example

int* number;

char* character;

double* decimals;

Tip: There are three ways to declare pointer variables, but the first way is

preferred:

Computer Skills & Programming II Dr. Shayma Akram

9

string* mystring; // Preferred
string *mystring;
string * mystring;

Example

int* pointVar, var;

Here, we have declared a pointer pointVar and a normal variable var.

Assigning Addresses to Pointers

Example

int* pointVar, var;

var = 5;

// assign address of var to pointVar pointer

pointVar = &var;

Here, 5 is assigned to the variable var. And, the address of var is

assigned to the pointVar pointer with the code pointVar = &var.

& is the address-of operator, and can be read simply as "address of"

* is the dereference operator, and can be read as "value pointed to by"

Get the Value from the Address Using Pointers

Computer Skills & Programming II Dr. Shayma Akram

10

To get the value pointed by a pointer, we use the * operator. For

example:

int* pointVar, var;

var = 5;

// assign address of var to pointVar

pointVar = &var;

// access value pointed by pointVar

cout << *pointVar << endl; // Output: 5

In the above code, the address of var is assigned to pointVar. We have

used the *pointVar to get the value stored in that address.

When * is used with pointers, it's called the dereference operator. It

operates on a pointer and gives the value pointed by the address stored

in the pointer. That is, *pointVar = var.

Modify the Pointer Value

You can also change the pointer's value. But note that this will also

change the value of the original variable:

Example

string food = "Pizza";

string* ptr = &food;

// Output the value of food (Pizza)

cout << food << "\n";

// Output the memory address of food (0x6dfed4)

cout << &food << "\n";

// Access the memory address of food and output its value (Pizza)

cout << *ptr << "\n";

// Change the value of the pointer

*ptr = "Hamburger";

// Output the new value of the pointer (Hamburger)

Computer Skills & Programming II Dr. Shayma Akram

11

cout << *ptr << "\n";

// Output the new value of the food variable (Hamburger)

cout << food << "\n";

C++ References

A reference variable is a "reference" to an existing variable, and it is created

with the & operator:

Declaring References
string food = "Pizza"; // food variable
string &meal = food; // reference to food

Now, we can use either the variable name food or the reference name meal to

refer to the food variable:

Example

string food = "Pizza";

string &meal = food;

cout << food << "\n"; // Outputs Pizza

cout << meal << "\n"; // Outputs Pizza

References vs Pointers

References are often confused with pointers but three major differences between
references and pointers are −

• Once a reference is initialized to an object, it cannot be changed to refer to
another object. Pointers can be pointed to another object at any time.

• A reference must be initialized when it is created. Pointers can be initialized
at any time.

The & operator was used to create a reference variable. But it can also be

used to get the memory address of a variable; which is the location of
where the variable is stored on the computer.

