## ALMUSTAQBAL UNIVERSITY COLLEGE

Biomedical Engineering Department
Stage : Second year students
Subject : General chemistry - Lecture 6
Lecturer: Assistant professor Dr. SADIQ . J. BAQIR


## Molarity of liquids:

The molarity of liquids Can be determined by applying the following formula:

Molarity of liquid( $\mathbf{M}$ ) $=\frac{s p . g r x\left(\frac{w}{w}\right) \% \times 1000}{M w t}$
Specific gravity ( Sp.gr ) = $\frac{\text { density of substance }}{\text { density of water }}$
Specific gravity ( Sp.gr ) $=\frac{d_{\text {substance }}}{d_{H_{2}} \mathrm{O}}$
$\left(\right.$ sp.gr $\left.\approx \mathbf{d}_{\text {substance }}\right) \quad$ as $\mathbf{d}_{\mathbf{H}_{2} \mathbf{O}=\mathbf{1}}$

## Example:

Calculate the molarity of the solution of $70.5 \% \mathrm{HNO}_{3}(\mathrm{w} / \mathrm{w})(63.0 \mathrm{~g} / \mathrm{mol})$ that has specific gravity of (1.42) .

## Solution:

$\operatorname{Molarity}(\mathbf{M})=\frac{\operatorname{sp.gr} x\left(\frac{w}{w}\right) \% x 1000}{M w t}$
$M=\frac{1.42 \times\left(\frac{70.5}{100}\right) \times 1000}{63.0}=\frac{1.42 \times 70.5 \times 10}{63.0}=15.9 \mathrm{M}$

## Example :

Calculate the molarity of $\mathrm{NaOH}(40 \mathrm{~g} / \mathrm{mol})$ solution of $50\left(\frac{w}{w}\right) \%$ knowing that its specific gravity(sp.gr) is $\mathbf{1 . 5 2 5}$.

Solution:
$\operatorname{Molarity}(\mathbf{M})=\frac{\operatorname{sp.gr} x\left(\frac{w}{w}\right) \% \times 1000}{M w t}$
Molarity $(M)=\frac{1.525 \times\left(\frac{50}{100}\right) \times 1000}{40}=\frac{1.525 \times 50.5 \times 10}{40}=19.06 \mathrm{M}$

## Example:

Describe the preparation of $(100 \mathrm{~mL})$ of $(6.0 \mathrm{M}) \mathbf{H C l}$ from its concentrated solution that is $37.1 \%(w / w) \mathbf{H C l}(36.5 \mathrm{~g} / \mathrm{mole})$ and has specific gravity ( sp.gr ) of (1.181) .

## Solution:

$$
\begin{aligned}
& \text { | . نحسب تركيز الحامض الاصلي (المركز) من القانون التالي: } \\
& \mathrm{M}_{\mathrm{HCl}}=\frac{\operatorname{sp.gr} \boldsymbol{x}\left(\frac{w}{w}\right) \% \times 1000}{M w t} \\
& M_{\mathrm{HCl}}=\frac{1.18 \times \frac{37.1}{100} \times 1000}{36.5} \\
& M_{H C l}=\frac{1.18 \times 37.1 \times 1000}{36.5 \times 100}
\end{aligned}
$$

$M_{\mathrm{HCl}}=\frac{1.18 \times 37.1 \times 10}{36.5}=12.0 \mathrm{M}$
The Molarity of the concentrated acid is 12.0 M
الان نذهب الى قانون التخفيف لحساب الحجم المطلوب اخذه من الحامض المركز وتخفيفه الى الحجم المطلوب (• • 1 مللتر في هنا المثال) وكمايلي:

No. of moles of Conc. solution $=$ No. of moles of dil. Solution also

No. of mmoles of Conc. solution $=$ No. of mmoles of dil. Solution
$\mathbf{M c o n c} . \mathbf{V}_{\text {conc. }}=\mathbf{M d i l}_{\text {dil }} \mathbf{V}_{\text {dil. }}$
$12.0 \times V_{\text {conc }}=6.0 \times 100$
$\mathrm{V}_{\text {conc }}=\frac{6.0 \times 100}{12}=\mathbf{5 0} \mathrm{mL}$.
Then $\mathbf{5 0} \mathrm{mL}$ of concentrated acid is to be diluted to 100 mL to give $\mathbf{6} \mathrm{M}$ solution

Example:
Describe the preparation of 500 mL of $3.00 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(98 \mathrm{~g} / \mathrm{mol})$ from the commercial reagent that is $\mathbf{9 3 \%} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathbf{w} / \mathbf{w})$ and has a specific gravity of 1.830 .

Solution:

1. We have to calculte the concentration of the original conc. Solution
$\mathbf{M}_{\mathbf{H 2 S O}}=\frac{\text { sp.gr } x \% \times 1000}{M . \boldsymbol{w t}}$
$M_{\mathrm{H} 2 \mathrm{SO}}=\frac{1.830 \times \frac{93}{100} \times 1000}{98}$
$M_{\text {H2SO4 }}=\frac{1.830 \times 93 \times 1000}{98 \times 100}$
$M_{\mathrm{H} 2 \mathrm{SO} 4}=\frac{1.830 \times 93 \times 10}{98}=17.37 \mathrm{M}$

لحساب الحجم المطلوب اخذه من الحامض المركز وتخفيفه الى الحجم المطلوب ( • • ه مللتر في هذا المثّال) نطبق قانون التخفيف التالي:
$\mathbf{N}_{\text {conc. }} \mathbf{V}_{\text {conc. }}=\mathbf{N}_{\text {dil. }} \mathbf{V}_{\text {dil. }}$
$17.37 \times V_{\text {conc }}=3.0 \times 500$
$V_{\text {conc }}=\frac{3.0 \times 500}{17.37}=86.36 \mathrm{~mL}$.
Then 86.36 mL of concentrated acid is to be diluted to 500 mL to give $\mathbf{3} \mathbf{~ M}$ solution.

## Calculation of Normality of liquids

Normality of liquid( $\mathbf{N})=\frac{\operatorname{sp.gr} x\left(\frac{w}{w}\right) \% \times 1000}{e q \cdot w t}$

## Example:

Describe the preparation of 500 mL of $3.00 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathbf{9 8} \mathrm{~g} / \mathrm{mol})$ from the commercial reagent that is $96 \% \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{w} / \mathrm{w})$ and has a specific gravity of 1.840 .

Solution:
$\mathbf{M}_{\text {H2SO4 }}=\frac{\text { sp.gr } x \% \times 1000}{\text { eq.wt }}$
eq. $\mathrm{wt}=\frac{M w t}{\eta}$

For $\mathrm{H}_{2} \mathrm{SO}_{4} \quad \boldsymbol{\eta}=\mathbf{2}$ then
eq.wt $=\frac{98}{2}=49$
Normality $\left(\mathbf{N}_{\text {H2SO4 }}\right)=\frac{1.840 \times \frac{96}{100} \times 1000}{49}$

$$
\text { Normality }\left(\mathbf{N}_{\mathrm{H} 2 \mathrm{SO} 4}\right)=\frac{1.840 \times 96 \times 1000}{49 \times 100}
$$

Normality $\left(\mathrm{N}_{\mathrm{H} 2 \mathrm{SO}}\right)=\frac{1.840 \times 96 \times 10}{49}=36.04 \mathrm{~N}$
The Normality of the concentrated acid is $36.04 \mathbf{N}$

لحساب الحجم المطلوب اخذه من الحامض المركز وتخفيفه الم الحجم المطلوب ( • • ه مللتر في هذا المثّال) نطبق قانون التخفيف التالي:
$\mathbf{N}_{\text {conc. }} \mathbf{V}_{\text {conc. }}=\mathbf{N}_{\text {dil. }} \mathbf{V}_{\text {dil }}$.
$36.04 \times V_{\text {conc }}=3.0 \times 500$
$V_{\text {conc }}=\frac{3.0 \times 500}{36.04}=41.62 \mathrm{~mL}$.
Then 41.62 mL of concentrated acid is to be diluted to 500 mL to give $\mathbf{3 N}$ solution.

## Example:

A solution of $6.42(\mathbf{w} / \mathbf{w}) \%$ of $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}(241.86 \mathrm{~g} / \mathrm{mol})$ has a specific gravity of 1.059. Calculate:
(a) the molar concentration of this solution.
(b) the mass in grams of $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$ contained in each liter of this solution Answer:
a) To calculate the molar concentration of the solution
$\mathbf{M}_{\text {Fe(NO3) }}=\frac{\text { sp.gr } \times \mathbf{x} 1000}{\text { Mwt }}$
$\mathrm{M}_{\mathrm{Fe}(\mathrm{NO} 3) 3}=\frac{1.059 \times \frac{6.42}{100} \times 1000}{241.86}=0.281$
(b) the mass in grams of $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$ contained in each liter of this solution(i.e: the concentration of solution in $\mathrm{g} / \mathrm{L}$ ).
Weight (g) = Molarity x volume(liter) x M.wt
Weight $=\mathbf{0 . 2 8 1} \times 1$ liter $\times 241.86=67.96 \mathrm{~g}$
The concentration of solution in $\mathrm{g} / \mathrm{L}=67.96 \mathrm{~g} / \mathrm{L}$

Second method:
$\operatorname{Molarity}(M)=\frac{\mathrm{wt}_{(\mathrm{g})} \times 1000}{\mathrm{M} . \mathrm{wt} \mathbf{x} \mathrm{V}_{\mathrm{mL}}}$
$\mathbf{w t}(\mathrm{g})=\frac{\operatorname{Molarity}(\mathrm{M}) \times \mathrm{M} . \mathrm{wt} \mathrm{V} \mathrm{V}_{\mathrm{mL}}}{1000}$
$\mathrm{wt}(\mathrm{g})=\frac{0.281 \times 241.86 \times 1000 \mathrm{~mL}}{1000}=67.96 \mathrm{~g}$
Example:
A $12.5 \%$ (w/w)aqueous solution of $\mathrm{NiCl}_{2}(129.61 \mathrm{~g} / \mathrm{mol})$ has specific gravity of 1.149. Calculate:
(a) the Molarity of $\mathbf{N i C l}_{2}$ in this solution.
(b) the molar concentration of $\mathrm{Cl}^{-}$in the solution.
(c) the mass in grams of $\mathrm{NiCl}_{2}$ contained in 500 mL of this solution.

Answer:
(a) the Molarity of $\mathrm{NiCl}_{2}$ in this solution
$\mathbf{M}_{\mathrm{NiCl} 2}=\frac{\operatorname{sp.gr} x \% \times 1000}{M w t}$
$\mathrm{M}_{\mathrm{NiCl} 2}=\frac{1.149 \times \frac{6.42}{100} \times 1000}{129.61}=0.569 \mathrm{M}$
(b) the molarity of Cl concentration in the solution.
$\mathbf{N i C l}_{2} \quad------\quad \mathbf{N i}^{\mathbf{+}} \quad+\quad \mathbf{2 C l}^{-}$

Each 1 mole gives 1 mole 2 mole
Molarity of $\mathrm{Cl}^{-}=2 \times$ Molarity of $\mathbf{N i C l}_{2}$
Molarity of $\mathrm{Cl}^{-}=2 \times 0.569=1.138 \mathrm{M}$
(c) the mass in grams of $\mathrm{NiCl}_{2}$ contained in 500 mL of this solution.

Weight ( $\mathbf{g}$ ) = Molarity $\mathbf{x}$ volume(liter) x M.wt
Weight $=0.569 \times\left(\frac{500}{1000}\right) \mathbf{L} \times 129.61=36.87 \mathrm{~g}$

## Example:

A solution was prepared by dissolving 327.8 mg of $\mathrm{Na}_{3} \mathrm{PO}_{4}(163.9 \mathrm{~g} / \mathrm{mol})$ in sufficient water to give 750 mL . Calculate:
A) The Molarity and Normality of the solution
B) the Molar concentration of $\mathbf{N a}^{+}$in the solution.

## Answer:

A) The Molarity and Normality of the solution
$\operatorname{Molarity}(M)=\frac{\mathrm{wt}_{(\mathrm{g})} \times 1000}{\operatorname{M.wt} \times V_{\mathrm{mL}}}$
Weight of $\mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{~g})=\frac{327.8 \mathrm{mg}}{1000}=0.3278 \mathrm{~g}$
$\operatorname{Molarity}(M)=\frac{0.3278 \times 1000}{163.9 \times 750}=0.00267 \mathrm{M}=2.67 \times 10^{-3} \mathrm{M}$
$\operatorname{Normality}(\mathbf{N})=\operatorname{Molarity}(\mathbf{M}) \mathbf{x}$
$(\boldsymbol{\eta})=\Sigma$ [ no. of cations $x$ its valency(cation charge)]
For $\mathrm{Na}_{3} \mathrm{PO}_{4}(\eta)=\Sigma\left[3 \mathrm{Na}^{+} \mathrm{x}(+\mathbf{1})\right]=3$
Normality $(N)=2.67 \times 10^{-3} \times 3=8.01 \times 10^{-3} \mathrm{~N}$
B) the Molar concentration of $\mathbf{N a}^{+}$in the solution.
$\mathrm{Na}_{3} \mathrm{PO}_{4} \rightarrow 3 \mathbf{N a}^{+}+\mathrm{PO}_{4}{ }^{3-}$

1 mole 3 mole

Molarity of $\mathrm{Na}^{+}=3 \times$ Molarity of $\mathrm{Na}_{3} \mathrm{PO}_{4}$

Molarity of $\mathrm{Na}^{+}=3 \times 2.67 \times 10^{-3}=8.01 \times 10^{-3} \mathrm{M}$

