
Page 1

 Problem Solving using Search

The breadth-first algorithm spreads out in a uniform manner from the

start node. From the start, it looks at each node one edge away. Then it

moves out from those nodes to all nodes two edges away from the start.

This continues until either the goal node is found or the entire tree is

searched.

Characteristics of breadth-first algorithm

 Breadth-first search is complete; It will find a solution if one exists.

 But it is neither optimal in the general case (it won’t find the best solution, just
the first one that matches the goal state),

 It doesn’t have good time or space complexity (it grows exponentially in time
and memory consumption).

Example
A map like the one in Figure below can be naturally represented by a graph data

structure, where the cities names are the nodes, and the major roadways between

cities are the links or edges of the graph. So, from a programming perspective, our

problem is to traverse a graph data structure in a systematic way until we either find

the goal city or exhaust all possibilities. Hopefully having the entire state-space

shown on a map will make understanding the operations of the search algorithms

easier. In more complex problems, all we have is the single start state and a set of

operators which are used to generate more and more new states. The search

algorithms work the same way, but conceptually, we are growing or expanding the

graph, instead of having it specified at the start. Map of midwestern U.S. cities is

illustrated below:-

The breadth-first algorithm spreads out in a uniform manner from the start node. From

the start, it looks at each node one edge away. Then it moves out from those nodes to

all nodes two edges away from the start. This continues until either the goal node is

found or the entire tree is searched.

Page 2

Let’s walk through an example to see how breadth-first search could find a city on our

map.

1- Our search begins in Rochester (Start State), and we want to know if we can

get to Wausau (Goal State) from there.

2- The Rochester node is placed on the queue in step 1 in previous algorithm.

Next we enter our search loop at step 2. Queue=[Rochester]

3- We remove Rochester, the first node from the queue. Rochester does not

contain our goal state (Wausau) so we expand it by taking each child node in

Rochester, and adding them to the back of the queue. Queue= [Sioux Falls,

Minneapolis, LaCrosse, and Dubuque].

4- We remove the first node from the queue (Sioux Falls) and test it to see if it is

our goal state. It is not, so we expand it, adding Fargo and Rochester to the

end of our queue, which now contains [Minneapolis, LaCrosse, Dubuque,

Fargo, and Rochester].

5- We remove Minneapolis, the goal test fails, and we expand that node, adding

St.Cloud, Wausau, Duluth, LaCrosse, and Rochester to the search queue,

now holding [LaCrosse, Dubuque, Fargo, Rochester, St.Cloud, Wausau,

Duluth, LaCrosse, and Rochester].

6- We test LaCrosse and then expand it, adding Minneapolis, GreenBay,

Madison, Dubuque, and Rochester to the list, which has now grown to

[Dubuque, Fargo, Rochester, St.Cloud, Wausau, Duluth, LaCrosse,

Rochester, Minneapolis, GreenBay, Madison, Dubuque, and Rochester].

We remove Dubuque and add Rochester, LaCrosse, and Rockford to the

search queue.

Page 3

7- At this point, we have tested every node which is one level in the tree away

from the start node (Rochester). Our search queue contains the following

nodes: [Fargo, Rochester, St.Cloud, Wausau, Duluth, LaCrosse,

Rochester, Minneapolis, GreenBay, Madison, Dubuque, Rochester,

Rochester, LaCrosse, and Rockford].

8- We remove Fargo, which is two levels away from Rochester, and add Grand

Forks, St. Cloud, and Sioux Falls.

9- Then we test and expand Rochester (Rochester to Minneapolis to Rochester is

two levels away from our start). Next is St. Cloud; again we expand that node.

10- Finally, we get to Wausau; our goal test succeeds and we declare success.

11- Our search order was Rochester, Sioux Falls, Minneapolis, LaCrosse,

Dubuque, Fargo, Rochester, St. Cloud, and Wausau as shown below:-

Note that this trace could have been greatly simplified by keeping track of nodes

which had been tested and expanded. This would have cut down on our time and

space complexity.

Characteristics of Depth First Search

 The depth-first algorithm searches from the start or root node all the way

down to a leaf node. If it does not find the goal node, it backtracks up the tree

and searches down the next untested path until it reaches the next leaf.

 If you imagine a large tree, the depth-first algorithm may spend a large amount

of time searching the paths on the lower left when the answer is really in the

lower right.

 Depth-first search is a brute-force method, it will blindly follow this search
pattern until it comes across a node containing the goal state, or it searches the

entire tree.

 Depth-first search has lower memory requirements than breadth-first search,

 It is neither complete nor optimal.

Page 4

Example

Let’s walk through a simple example of how depth-first search would work if we

started in Rochester and wanted to see if we could get to Wausau.

Initial State= (Rochester) and Final-State (Wausau)

1. Starting with Rochester, we test and expand it, placing Sioux Falls, then

Minneapolis, then LaCrosse, then Dubuque at the front of the search queue

Queue=[Dubuque, LaCrosse, Minneapolis, Sioux Falls].

2. We remove Dubuque and test it; it fails, so we expand it adding Rochester to

the front, then LaCrosse, then Rockford. Our search queue now looks like

[Rockford, LaCrosse, Rochester, LaCrosse, Minneapolis, Sioux Falls].

3. We remove Rockford, and add Dubuque, Madison, and Chicago to the front

of the queue in that order, yielding Queue=[Chicago, Madison, Dubuque,

LaCrosse, Rochester, LaCrosse, Minneapolis, Sioux Falls].

4. We test Chicago, and place Rockford, and Milwaukee on the queue.

5. We take Milwaukee from the front and add Chicago, Madison, and Green

Bay to the search queue. It is now Queue=[Green Bay, Madison, Chicago,

Rockford, Chicago, Madison, Dubuque, LaCrosse, Rochester, LaCrosse,

Minneapolis, Sioux Falls].

6. We remove Green Bay and add Milwaukee, LaCrosse, and Wausau to the

queue in that order. Finally, Wausau is at the front of the queue and our goal

test succeeds and our search ends. Our search order was Rochester, Dubuque,

Rockford, Chicago, Milwaukee, Green Bay, and Wausau.

Page 5

Open: [A]

Closed[]

In this example, we again did not prevent tested nodes from being added to the search

queue. As a result, we had duplicate nodes on the queue. In the depth-first case, this

could have been disastrous. We could have easily had a cycle or loop where we tested

one city, then a second, then the first again, ad infinitum.

Example of Breadth First Search

Page 6

Open:[C,D,E]

Closed:[A,B]

We continue in the same

procedure until we reach

the Goal [G]

Time Complexity

Space Complexity

Open: [B,C]

Closed:[A]

Page 7

Example 2: BFS (Breadth First Search)

Taken from http://iis.kaist.ac.kr/es/

Initial State Goal State:

How can we solve this problem?

1. We need to initiate the start (initial State) .

2. We need to use the control strategy.

3. Apply the initial state and control strategy to reach the Goal.

The solving of this problem is to consider the initial state as above:

http://iis.kaist.ac.kr/es/

Page 8

Page 9

Example3: Apply this example using Depth First Search with goal

[N]?

