

Page 1 Date: Tuesday, March 04, 2014

Heuristic Search & Hill Climbing

Heuristic Search

The Traveling Salesman Problem (TSP), where a salesman makes a complete tour of

the cities on his route, visiting each city exactly once, while traveling the shortest

possible distance, is an example of a problem which has a combinatorial

explosion. As such, it cannot be solved using breadth-first or depth-first search for

problems of any realistic size. Unfortunately, there are many problems which have

this form and which are essentially intractable (they can’t be solved). In these cases,

finding the best possible answer is not computationally feasible, and so we have to

settle for a good answer. In this section we discuss several heuristic search methods

which attempt to provide a practical means for approaching these kinds of search

problems.

What is the Heuristic Search ?

Heuristic search methods are characterized by this sense that we have limited time

and space in which to find an answer to complex problems and so we are willing

to accept a good solution. As such, we apply heuristics or rules of thumb as we are

searching the tree to try to determine the likelihood) لامتاح (that following one path or

another is more likely to lead to a solution. Note this is in stark contrast to brute-

force methods which chug along merrily regardless of whether a solution is anywhere

in sight.

Heuristic search methods use objective functions called heuristic functions to try to

gauge the value of a particular node in the search tree and to estimate the value of

following down any of the paths from the node.

Generate and Test Algorithm

The generate and test algorithm is the most basic heuristic search function. The steps

are:

1. Generate a possible solution, either a new state or a path through the

problem space.

2. Test to see if the new state or path is a solution by comparing it to a set of

goal states.

3. If a solution has been found, return success; else return to step 1.

Page 2 Date: Tuesday, March 04, 2014

function HILL-CLIMBING(problem) returns a solution state

Example:-

Figure (1): Example of Generate and Test Algorithm

Question for Students: what is the difference between this algorithm and depth

first search algorithm?

Disadvantage of this algorithm

 It may take an extremely long time. For small problems, generate and test can

be an effective algorithm, but for large problems, the undirected search

strategy leads to lengthy run times and is impractical.

 The major weakness of generate and test is that we get no feedback on which

direction to search. We can greatly improve this algorithm by providing

feedback through the use of heuristic functions.

Hill climbing Algorithm

It is an improved generate-and-test algorithm, where feedback from the tests are used

to help direct the generation (and evaluation) of new candidate states. When a node

state is evaluated by the goal test function, a measure or estimate of the distance to the

goal state is also computed.

Pseudo-Code Algorithm

Page 3 Date: Tuesday, March 04, 2014

Example

In this example, (a) is initial State and (h) and (k) is final states and it says that the

numbers near the states are the heuristic values.

What are disadvantages of this algorithm?

 One problem with hill climbing search in general is that the algorithm can get

caught in local minima or maxima. Because we are always going in the

direction of least cost, we can follow a path up to a locally good solution,

while missing the globally excellent solution available just a few nodes away.

Once at the top of the locally best solution, moving to any other node would

lead to a node with lower goodness.

inputs: problem, a problem

static: current, a node

next, a node

current <— MAKE-NODE(lNlTIAL-STATE[problem])

loop do

next— a highest-valued successor of current

if VALUE[next] < VALUE[current] then return current

current *—next

end

Page 4 Date: Tuesday, March 04, 2014

 Another possibility is that a plateau or flat spot exists in the problem space.

Once the search algorithm gets up to this area all moves would have the same

goodness and so progress would be halted.

 It isn’t complete and can't guarantee to find the global maxima. The benefit, of

course, is that it requires a fraction of the resources. In practice and applied to

the right problems, it's a very effective solution.

 Hill Climbing don't generally backtrack, because it doesn’t keeping track of

state (it's local search) and you would be moving away from a maxima

In the example above :

 Hill climbing on the tree, we start a f g and then what ?? finish(without

result). This is called a local minima

Solutions

 A common way to avoid getting stuck in local maxima with Hill Climbing is to use

random restarts. In the example in above if G is a local maxima, the algorithm would

stop there and then pick another random node to restart from. So if J or C were

picked (or possibly A, B, or D) you would find the global maxima in H or K. it will find

the global maxima or something close; depending on time/resource limitations and

the problem space.

 Another solution to avoid getting trapped in suboptimal states, variations on

the hill climbing strategy have been proposed. One is to inject noise into the

evaluation function, with the initial noise level high and slowly decreasing

over time. This technique, called simulated annealing, allows the search

algorithm to go in directions which are not “best” but allow more complete

exploration of the search space.

