Experiment no.1: The Transfer Function

Using Matlab programming in control systems.

Object:

How to deal with a transfer function and using its coefficients (num, den) in amatlab program.

Instructions:

A) a transfer function such as
$$G(S)=18 (S+20) (S+15)(S+25)$$

the numerator of it is =18(S+20), so we enter in it in amatlab program as num= $18*[1\ 20]$, where (1) is a coefficient of the S and 20 is a coefficient of S^0 thus the arrangement of coefficient is as follow:

the coefficient of the highest degree of S

conv: Convolution and polynomial multiplication; for example C = conv(A, B).

for example if we have the num=S^3 + 2S^2 +5 so we enter it in a matlab program in the form num=[1 2 0 5] and so on, the same thing is done with denominator so, den=conv[1 15],[1 25], where conv mean multiply the two brackets with each other.

Example:

If
$$G(S) = \frac{18(S+20)}{(S+15)(S+25)(S+0.4)}$$

the program will be as follows:

```
num=18*[1 20];
den=conv ( conv ([1 15],[1 25]),[1 0.4]);
G(s)=tf(num,den)
```

B)if we want to find a T.F. of a 2^{nd} order control system by knowing its natural frequency Wn & damping ratio ζ by a matlab program this could be known as follows:

Program:

wn=2; damping=0.707; [num1, den1]=ord2(wn, damping); G1(s)=tf(num1,den1)

Case studies

$$1-G(s) = \frac{s}{S^2 + 6s + 8}$$

$$2-G(s) = \frac{(s+3)}{(s+4)(s+2)(s+7)}$$

$$3-G(s) = \frac{9s}{s^6 + s^4 + s^2 + s}$$

$$4-G(s) = \frac{s(s+2)}{(s^2 + 2)(s+5)}$$

$$5-damping = 0.4; wn = 2$$

$$6 - damping = 0.2; wn = 1$$