

 Lecturer : Ali Al-Safi

2022/2021

Multimedia Computing

Al-Mustaqbal University College

Department of Computer Techniques

Engineering

https://www.facebook.com/mustaqbal.college/?hc_ref=PAGES_TIMELINE

18 & 19. Image compression techniques

Image compression is a type of data compression applied to digital

images, to reduce their cost for storage or transmission. Data

compression refers to the process of reducing the amount of data

required to represent a given quantity of information.

 The reduced file is called the compressed file and is used to reconstruct

the image

 Resulting in the decompressed image is the original image, is called the

uncompressed image file.

Example: the original image is 256×256 pixel, single band (gray

scale), 8-bit per pixel. This file is 65,536 bytes (64K). After compression

the image file is 6,554 byte. The compression ratio is:

SizeU/SizeC = 65536/6554= 9.999=10 this can be written as

10:1

This is called a “10 to 1” compression or a “10 times compression”, or it

can be stated as “compressing the image to 1/10 original size.

Image compression types

There are two primary types of image compression methods and

they are:

1. Lossless Compression

 This compression is called lossless because no data are lost (with

no loss in image quality)

 And the original image can be recreated exactly from the

compressed data.

 Lossless compression is generally used for text or spreadsheet

files, where losing words or financial data could pose a problem

 The Graphics Interchange File (GIF) is an image format used

lossless compression

2. Lossy Compression.

 Lossy Compression is the class of data encoding methods that

allows a loss in some of data images.

 The uncompressed image cannot be same the original image file.

 Lossy methods can provide high degrees of compression and result

in smaller compressed files, but some number of the original pixels,

sound waves or video frames are removed forever.

Compression System Model

The compression system model consists of two parts: the

compressor (Encoding) and the decompressor (Decoding).

Compressor: consists of preprocessing stage and encoding stage.

Decompressor: consists of decoding stage followed by a post processing

stage, as following figure:

Figure (1): Compression System Model.

Before encoding, preprocessing is performed to prepare the image

for the encoding process. After the compressed file has been decoded,

post processing can be performed to eliminate some of the undesirable

artifacts brought about by the compression process. Often, many

practical compression algorithms are a combination of a number of

different individual compression techniques.

Entropy

An important concept here is the idea of measuring the average

information in an image, referred to as entropy. The entropy of N×N

image can be calculated by this equation.

Where

Pi = The probability of the ith gray level nk /N2

nk= the total number of pixels with gray value k.

L= the total number of gray levels (e.g. 256 for 8-bits)

Example

Let L=8, meaning that there are 3 bits/ pixel in the original image.

Let that number of pixel at each gray level value are equal (they have the

same probability) that is:

P0=P1=P2=……=P7=1/8

Now, we can calculate the entropy as follows:

This tell us that the theoretical minimum for lossless coding for this

image is 8 bit/pixel

Note:Log2(x) can be found by taking Log10(x) and multiplying by 3.33

bacuase 1/Log10(2) =3.32192809488736234

Lossless Compression Algorithms

1. Run-length Encoding (RLE)

 This encoding method is frequently applied to graphics-type images

(or pixels in a scan line) - simple compression algorithm in its own

right.

 It is also a component used in JPEG compression pipeline.

 Example: Original sequence: 111122233333311112222

can be encoded as: (4,1),(3,2),(6,3),(4,1),(4,2)

How Much Compression?The savings are dependent on the data: In the

worst case (random noise) encoding is heavier than original file.

2. Simple Repetition Suppression

 Replace series with a token and a count number of occurrences.

 Usually need to have a special flag to denote when the repeated

token appears.

 Simplicity is its downfall: poor compression ratios.

 Compression savings depend on the content of the data.

Example:

 89400000000000000000000000000000000

 We can replace with: 894f32 /where f is the flag for zero.

3. Pattern Substitution

• This is a simple form of statistical encoding.

• Here we substitute a frequently repeating pattern(s) with a code.

• The code is shorter than the pattern giving us compression.

• The simplest scheme could employ predefined codes:

Example: Basic Pattern Substitution

Replace all occurrences of pattern of characters ̀ and' with the predefined

code '&', So: and you and Ibecomes:& you & I

4-Shanon-Fano Method

A Shannon–Fano tree is built according to a specification designed to

define an effective code table. The actual algorithm is simple:

 1. For a given list of symbols, develop a corresponding list of probabilities

or frequency counts so that each symbol’s relative frequency of

occurrence is known.

 2. Sort the lists of symbols according to frequency, with the most

frequently occurring symbols at the left and the least common at the

right.

 3. Divide the list into two parts, with the total frequency counts of the left

part being as close to the total of the right as possible.

 4. The left part of the list is assigned the binary digit 0, and the right part

is assigned the digit 1. This means that the codes for the symbols in

the first part will all start with 0, and the codes in the second part will

all start with 1.

 5. Recursively apply the steps 3 and 4 to each of the two halves,

subdividing groups and adding bits to the codes until each symbol has

become a corresponding code leaf on the tree.

Example:The source of information A generates the symbols {A0, A1, A2,

A3 and A4} with the corresponding probabilities {0.4, 0.3, 0.15, 0.1 and

0.05}. Encoding the source symbols using binary encoder and Shannon-

Fano encoder gives:

The Entropy of the source is:

Thus the efficiency of the binary code is

Shannon-Fano code is a top-down approach. Constructing the code tree,

we get

The average length of the Shannon-Fano code is

Thus the efficiency of the Shannon-Fano code is

This example demonstrates that the efficiency of the Shannon-Fano

encoder is much higher than that of the binary encoder.

Huffman Code

The Huffman coding algorithm comprises two steps, reduction and

splitting. These steps can be summarized as follows:

1) Reduction

a) List the symbols in descending order of probability.

b) Reduce the r least probable symbols to one symbol with a

probability equal to their combined probability.

c) Reorder in descending order of probability at each stage.

d) Repeat the reduction step until only two symbols remain.

2) Splitting

a) Assign r ,... 1, 0 to the r final symbols and work backwards.

b) Expand or lengthen the code to cope with each successive split.

Example: Design Huffman codes for 𝐴 = {𝑎1, 𝑎2, … … . 𝑎5},having the

probabilities

{0.2, 0.4, 0.2, 0.1, 0.1}.

The average code word length:

𝐿𝑎𝑣𝑔 = ∑ 𝑃𝑖𝑙𝑖
4
𝑖=0

𝐿 = 0.4 × 1 + 0.2 × 2 + 0.2 × 3 + 0.1 × 4 + 0.1 × 4 = 2.2 𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙

The source entropy:

𝑯(𝑺) = ∑ 𝒑𝒊 𝐥𝐨𝐠𝟐
𝟏

𝒑𝒊
or 𝑯(𝑺) = − ∑ 𝒑𝒊 𝐥𝐨𝐠𝟐 𝒑𝒊

(𝑌) = −[0.4𝑙𝑛0.4 + 2 × 0.2𝑙𝑛0.2 + 2 × 0.1𝑙𝑛0.1]/𝑙𝑛2 = 2.12193 bits/symbol

The code efficiency:

𝜂 =(2.12193 / 2.2)× 100 = 96.45%

