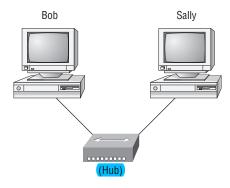


Computer Networks Fundamentals

Internetworking


Internetworking Basics

Before we explore internetworking models and the specifications of the OSI reference model, you've got to understand the big picture and learn the answer to the key question, Why is it so important to learn Cisco internetworking?

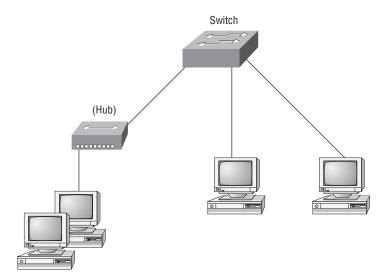
Networks and networking have grown exponentially over the last 15 years—understandably so. They've had to evolve at light speed just to keep up with huge increases in basic mission-critical user needs such as sharing data and printers as well as more advanced demands such as videoconferencing. Unless everyone who needs to share network resources is located in the same office area (an increasingly uncommon situation), the challenge is to connect the sometimes many relevant networks together so all users can share the networks' wealth.

Starting with a look at Figure 1.1, you get a picture of a basic LAN network that's connected together using a hub. This network is actually one collision domain and one broadcast domain—but no worries if you have no idea what this means because I'm going to talk about both collision and broadcast domains so much throughout this whole chapter, you'll probably even dream about them!

FIGURE 1.1 The basic network

The basic network allows devices to share information.

The term computer language refers to binary code (0s or 1s).


The two hosts above communicate using hardware or MAC addresses.

Okay, about Figure 1.1... How would you say the PC named Bob communicates with the PC named Sally? Well, they're both on the same LAN connected with a multiport repeater (a hub). So does Bob just send out a data message, "Hey Sally, you there?" or does Bob use Sally's IP address and put things more like, "Hey 192.168.0.3, are you there?" Hopefully, you picked the IP address option, but even if you did, the news is still bad—both answers are wrong! Why? Because Bob is actually going to use Sally's MAC address (known as a hardware address), which is burned right into the network card of Sally's PC, to get ahold of her.

Great, but how does Bob get Sally's MAC address since Bob knows only Sally's name and doesn't even have her IP address yet? Bob is going to start with name resolution (hostname to

ones—something called *network segmentation*. You do this by using devices like *routers*, *switches*, and *bridges*. Figure 1.2 displays a network that's been segmented with a switch so each network segment connected to the switch is now a separate collision domain. But make note of the fact that this network is still one broadcast domain.

FIGURE 1.2 A switch can replace the hub, breaking up collision domains.

Keep in mind that the hub used in Figure 1.2 just extended the one collision domain from the switch port. Here's a list of some of the things that commonly cause LAN traffic congestion:

- Too many hosts in a broadcast domain
- Broadcast storms
- Multicasting
- Low bandwidth
- Adding hubs for connectivity to the network
- A bunch of ARP or IPX traffic (IPX is a Novell protocol that is like IP, but really, really chatty. Typically not used in today's networks.)

Take another look at Figure 1.2—did you notice that I replaced the main hub from Figure 1.1 with a switch? Whether you did or didn't, the reason I did that is because hubs don't segment a network; they just connect network segments together. So basically, it's an inexpensive way to connect a couple of PCs together, which is great for home use and troubleshooting, but that's about it!

Now routers are used to connect networks together and route packets of data from one network to another. Cisco became the de facto standard of routers because of its high-quality router products, great selection, and fantastic service. Routers, by default, break up a *broadcast domain*—the set of all devices on a network segment that hear all the broadcasts sent on that segment. Figure 1.3 shows a router in our little network that creates an internetwork and breaks up broadcast domains.

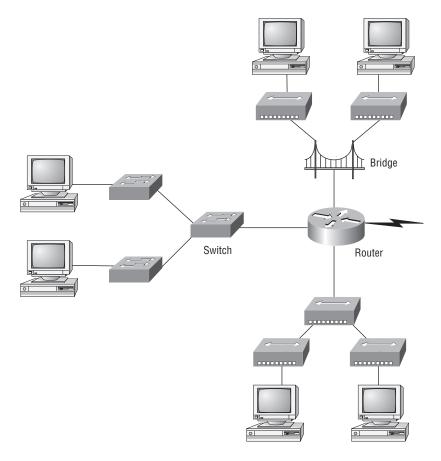
frames, routers (layer 3 switches) use logical addressing and provide what is called packet switching. Routers can also provide packet filtering by using access lists, and when routers connect two or more networks together and use logical addressing (IP or IPv6), this is called an internetwork. Last, routers use a routing table (map of the internetwork) to make path selections and to forward packets to remote networks.

Conversely, switches aren't used to create internetworks (they do not break up broadcast domains by default); they're employed to add functionality to a network LAN. The main purpose of a switch is to make a LAN work better—to optimize its performance—providing more bandwidth for the LAN's users. And switches don't forward packets to other networks as routers do. Instead, they only "switch" frames from one port to another within the switched network. Okay, you may be thinking, "Wait a minute, what are frames and packets?" I'll tell you all about them later in this chapter, I promise!

By default, switches break up *collision domains*. This is an Ethernet term used to describe a network scenario wherein one particular device sends a packet on a network segment, forcing every other device on that same segment to pay attention to it. At the same time, a different device tries to transmit, leading to a collision, after which both devices must retransmit, one at a time. Not very efficient! This situation is typically found in a hub environment where each host segment connects to a hub that represents only one collision domain and only one broadcast domain. By contrast, each and every port on a switch represents its own collision domain.

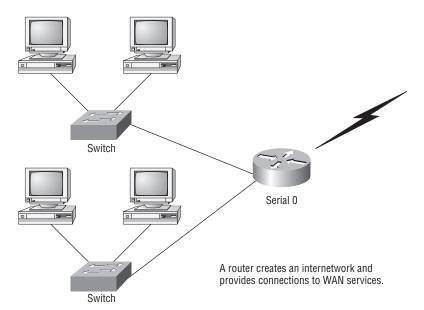
Switches create separate collision domains but a single broadcast domain. Routers provide a separate broadcast domain for each interface.

The term *bridging* was introduced before routers and hubs were implemented, so it's pretty common to hear people referring to bridges as switches. That's because bridges and switches basically do the same thing—break up collision domains on a LAN (in reality, you cannot buy a physical bridge these days, only LAN switches, but they use bridging technologies, so Cisco still calls them multiport bridges).


So what this means is that a switch is basically just a multiple-port bridge with more brain-power, right? Well, pretty much, but there are differences. Switches do provide this function, but they do so with greatly enhanced management ability and features. Plus, most of the time, bridges only had 2 or 4 ports. Yes, you could get your hands on a bridge with up to 16 ports, but that's nothing compared to the hundreds available on some switches!

You would use a bridge in a network to reduce collisions within broadcast domains and to increase the number of collision domains in your network. Doing this provides more bandwidth for users. And keep in mind that using hubs in your network can contribute to congestion on your Ethernet network. As always, plan your network design carefully!

Figure 1.4 shows how a network would look with all these internetwork devices in place. Remember that the router will not only break up broadcast domains for every LAN interface, it will break up collision domains as well.


When you looked at Figure 1.4, did you notice that the router is found at center stage and that it connects each physical network together? We have to use this layout because of the older technologies involved—bridges and hubs.

On the top internetwork in Figure 1.4, you'll notice that a bridge was used to connect the hubs to a router. The bridge breaks up collision domains, but all the hosts connected to both hubs are still crammed into the same broadcast domain. Also, the bridge only created two collision domains, so each device connected to a hub is in the same collision domain as every other device connected to that same hub. This is actually pretty lame, but it's still better than having one collision domain for all hosts.

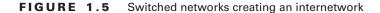
Notice something else: The three hubs at the bottom that are connected also connect to the router, creating one collision domain and one broadcast domain. This makes the bridged network look much better indeed!

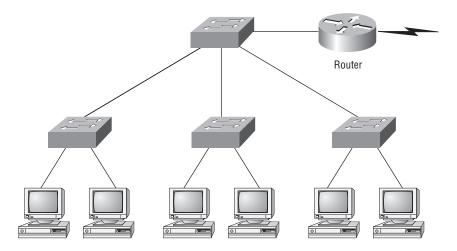
Although bridges/switches are used to segment networks, they will not isolate broadcast or multicast packets.

FIGURE 1.3 Routers create an internetwork.

The network in Figure 1.3 is a pretty cool network. Each host is connected to its own collision domain, and the router has created two broadcast domains. And don't forget that the router provides connections to WAN services as well! The router uses something called a serial interface for WAN connections, specifically, a V.35 physical interface on a Cisco router.

Breaking up a broadcast domain is important because when a host or server sends a network broadcast, every device on the network must read and process that broadcast—unless you've got a router. When the router's interface receives this broadcast, it can respond by basically saying, "Thanks, but no thanks," and discard the broadcast without forwarding it on to other networks. Even though routers are known for breaking up broadcast domains by default, it's important to remember that they break up collision domains as well.


There are two advantages of using routers in your network:


- They don't forward broadcasts by default.
- They can filter the network based on layer 3 (Network layer) information (e.g., IP address). Four router functions in your network can be listed as follows:
- Packet switching
- Packet filtering
- Internetwork communication
- Path selection

Remember that routers are really switches; they're actually what we call layer 3 switches (we'll talk about layers later in this chapter). Unlike layer 2 switches, which forward or filter

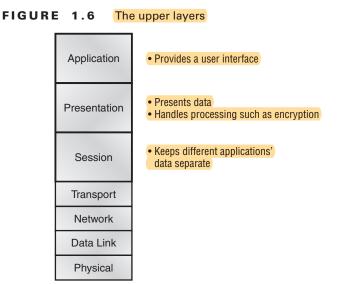
The best network connected to the router is the LAN switch network on the left. Why? Because each port on that switch breaks up collision domains. But it's not all good—all devices are still in the same broadcast domain. Do you remember why this can be a really bad thing? Because all devices must listen to all broadcasts transmitted, that's why. And if your broadcast domains are too large, the users have less bandwidth and are required to process more broadcasts, and network response time will slow to a level that could cause office riots.

Once we have only switches in our network, things change a lot! Figure 1.5 shows the network that is typically found today.

Okay, here I've placed the LAN switches at the center of the network world so the routers are connecting only logical networks together. If I implemented this kind of setup, I've created virtual LANs (VLANs), something I'm going to tell you about in Chapter 9, "Virtual LANs (VLANs)." So don't stress. But it is really important to understand that even though you have a switched network, you still need a router to provide your inter-VLAN communication, or internetworking. Don't forget that!

Obviously, the best network is one that's correctly configured to meet the business requirements of the company it serves. LAN switches with routers, correctly placed in the network, are the best network design. This book will help you understand the basics of routers and switches so you can make tight, informed decisions on a case-by-case basis.

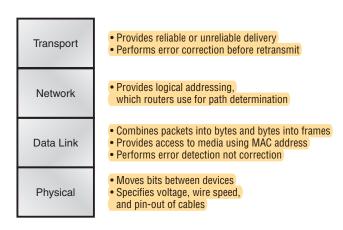
Let's go back to Figure 1.4 again. Looking at the figure, how many collision domains and broadcast domains are in this internetwork? Hopefully, you answered nine collision domains and three broadcast domains! The broadcast domains are definitely the easiest to see because only routers break up broadcast domains by default. And since there are three connections, that gives you three broadcast domains. But do you see the nine collision domains? Just in case that's a no, I'll explain. The all-hub network is one collision domain; the bridge network equals three collision domains. Add in the switch network of five collision domains—one for each switch port—and you've got a total of nine.



The OSI Reference Model

One of the greatest functions of the OSI specifications is to assist in data transfer between disparate hosts—meaning, for example, that they enable us to transfer data between a Unix host and a PC or a Mac.

The OSI isn't a physical model, though. Rather, it's a set of guidelines that application developers can use to create and implement applications that run on a network. It also provides a framework for creating and implementing networking standards, devices, and internetworking schemes.


The OSI has seven different layers, divided into two groups. The top three layers define how the applications within the end stations will communicate with each other and with users. The bottom four layers define how data is transmitted end to end. Figure 1.6 shows the three upper layers and their functions, and Figure 1.7 shows the four lower layers and their functions.

When you study Figure 1.6, understand that the user interfaces with the computer at the Application layer and also that the upper layers are responsible for applications communicating between hosts. Remember that none of the upper layers knows anything about networking or network addresses. That's the responsibility of the four bottom layers.

In Figure 1.7, you can see that it's the four bottom layers that define how data is transferred through a physical wire or through switches and routers. These bottom layers also determine how to rebuild a data stream from a transmitting host to a destination host's application.

FIGURE 1.7 The lower layers

The following network devices operate at all seven layers of the OSI model:

- Network management stations (NMSs)
- Web and application servers
- Gateways (not default gateways)
- Network hosts

Basically, the ISO is pretty much the Emily Post of the network protocol world. Just as Ms. Post wrote the book setting the standards—or protocols—for human social interaction, the ISO developed the OSI reference model as the precedent and guide for an open network protocol set. Defining the etiquette of communication models, it remains today the most popular means of comparison for protocol suites.

The OSI reference model has seven layers:

- Application layer (layer 7)
- Presentation layer (layer 6)
- Session layer (layer 5)
- Transport layer (layer 4)
- Network layer (layer 3)
- Data Link layer (layer 2)
- Physical layer (layer 1)

Figure 1.8 shows a summary of the functions defined at each layer of the OSI model. With this in hand, you're now ready to explore each layer's function in detail.

FIGURE 1.8 Layer functions

Application
Presentation
Session

• File, print, message, database, and application services
• Data encryption, compression, and translation services
• Dialog control

Transport
• End-to-end connection
• Routing

Data Link
• Framing
• Physical
• Physical topology

The Application Layer

The Application layer of the OSI model marks the spot where users actually communicate to the computer. This layer only comes into play when it's apparent that access to the network is going to be needed soon. Take the case of Internet Explorer (IE). You could uninstall every trace of networking components from a system, such as TCP/IP, NIC card, and so on, and you could still use IE to view a local HTML document—no problem. But things would definitely get messy if you tried to do something like view an HTML document that must be retrieved using HTTP or nab a file with FTP or TFTP. That's because IE will respond to requests such as those by attempting to access the Application layer. And what's happening is that the Application layer is acting as an interface between the actual application program—which isn't at all a part of the layered structure—and the next layer down by providing ways for the application to send information down through the protocol stack. In other words, IE doesn't truly reside within the Application layer—it interfaces with Application layer protocols when it needs to deal with remote resources.

The Application layer is also responsible for identifying and establishing the availability of the intended communication partner and determining whether sufficient resources for the intended communication exist.

These tasks are important because computer applications sometimes require more than only desktop resources. Often, they'll unite communicating components from more than one network application. Prime examples are file transfers and email, as well as enabling remote access, network management activities, client/server processes, and information location. Many network applications provide services for communication over enterprise networks, but for present and future internetworking, the need is fast developing to reach beyond the limits of current physical networking.

It's important to remember that the Application layer is acting as an interface between the actual application programs. This means that Microsoft Word, for example, does not reside at the Application layer but instead interfaces with the Application layer protocols. Chapter 2 will present some programs that actually reside at the Application layer—for example, FTP and TFTP.

The Presentation Layer

The *Presentation layer* gets its name from its purpose: It presents data to the Application layer and is responsible for data translation and code formatting.

This layer is essentially a translator and provides coding and conversion functions. A successful data-transfer technique is to adapt the data into a standard format before transmission. Computers are configured to receive this generically formatted data and then convert the data back into its native format for actual reading (for example, EBCDIC to ASCII). By providing translation services, the Presentation layer ensures that data transferred from the Application layer of one system can be read by the Application layer of another one.

The OSI has protocol standards that define how standard data should be formatted. Tasks like data compression, decompression, encryption, and decryption are associated with this layer. Some Presentation layer standards are involved in multimedia operations too.

The Session Layer

The Session layer is responsible for setting up, managing, and then tearing down sessions between Presentation layer entities. This layer also provides dialog control between devices, or nodes. It coordinates communication between systems and serves to organize their communication by offering three different modes: simplex, half duplex, and full duplex. To sum up, the Session layer basically keeps different applications' data separate from other applications' data.

The Transport Layer

The *Transport layer* segments and reassembles data into a data stream. Services located in the Transport layer segment and reassemble data from upper-layer applications and unite it into the same data stream. They provide end-to-end data transport services and can establish a logical connection between the sending host and destination host on an internetwork.

Some of you are probably familiar with TCP and UDP already. (But if you're not, no worries—I'll tell you all about them in Chapter 2.) If so, you know that both work at the Transport layer and that TCP is a reliable service and UDP is not. This means that application developers have more options because they have a choice between the two protocols when working with TCP/IP protocols.

The Transport layer is responsible for providing mechanisms for multiplexing upper-layer applications, establishing sessions, and tearing down virtual circuits. It also hides details of any network-dependent information from the higher layers by providing transparent data transfer.

The term *reliable networking* can be used at the Transport layer. It means that acknowledgments, sequencing, and flow control will be used.

The Transport layer can be connectionless or connection-oriented. However, Cisco is mostly concerned with you understanding the connection-oriented portion of the Transport layer. The following sections will provide the skinny on the connection-oriented (reliable) protocol of the Transport layer.

Flow Control

Data integrity is ensured at the Transport layer by maintaining *flow control* and by allowing users to request reliable data transport between systems. Flow control prevents a sending host on one side of the connection from overflowing the buffers in the receiving host—an event that can result in lost data. Reliable data transport employs a connection-oriented communications session between systems, and the protocols involved ensure that the following will be achieved:

- The segments delivered are acknowledged back to the sender upon their reception.
- Any segments not acknowledged are retransmitted.
- Segments are sequenced back into their proper order upon arrival at their destination.
- A manageable data flow is maintained in order to avoid congestion, overloading, and data loss.

The purpose of flow control is to provide a means for the receiver to govern the amount of data sent by the sender.

Connection-Oriented Communication

In reliable transport operation, a device that wants to transmit sets up a connection-oriented communication with a remote device by creating a session. The transmitting device first establishes a connection-oriented session with its peer system, which is called a *call setup* or a *three-way handshake*. Data is then transferred; when the transfer is finished, a call termination takes place to tear down the virtual circuit.

Figure 1.9 depicts a typical reliable session taking place between sending and receiving systems. Looking at it, you can see that both hosts' application programs begin by notifying their individual operating systems that a connection is about to be initiated. The two operating systems communicate by sending messages over the network confirming that the transfer is approved and that both sides are ready for it to take place. After all of this required synchronization takes place, a connection is fully established and the data transfer begins (this virtual circuit setup is called overhead!).

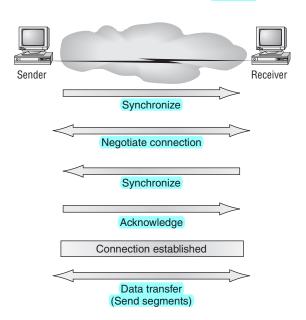
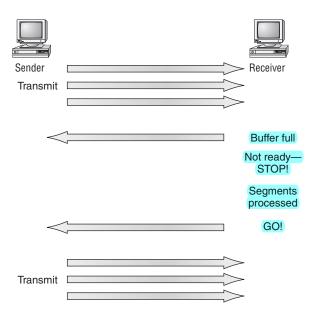


FIGURE 1.9 Establishing a connection-oriented session

While the information is being transferred between hosts, the two machines periodically check in with each other, communicating through their protocol software to ensure that all is going well and that the data is being received properly.

Let me sum up the steps in the connection-oriented session—the three-way handshake—pictured in Figure 1.9:

- The first "connection agreement" segment is a request for synchronization.
- The second and third segments acknowledge the request and establish connection parameters—the rules—between hosts. These segments request that the receiver's sequencing is synchronized here as well so that a bidirectional connection is formed.
- The final segment is also an acknowledgment. It notifies the destination host that the connection agreement has been accepted and that the actual connection has been established. Data transfer can now begin.


Sounds pretty simple, but things don't always flow so smoothly. Sometimes during a transfer, congestion can occur because a high-speed computer is generating data traffic a lot faster than the network can handle transferring. A bunch of computers simultaneously sending datagrams through a single gateway or destination can also botch things up nicely. In the latter case, a gateway or destination can become congested even though no single source caused the problem. In either case, the problem is basically akin to a freeway bottleneck—too much traffic for too small a capacity. It's not usually one car that's the problem; there are simply too many cars on that freeway.

Okay, so what happens when a machine receives a flood of datagrams too quickly for it to process? It stores them in a memory section called a *buffer*. But this buffering action can solve

the problem only if the datagrams are part of a small burst. If not, and the datagram deluge continues, a device's memory will eventually be exhausted, its flood capacity will be exceeded, and it will react by discarding any additional datagrams that arrive.

No huge worries here, though. Because of the transport function, network flood control systems really work quite well. Instead of dumping resources and allowing data to be lost, the transport can issue a "not ready" indicator to the sender, or source, of the flood (as shown in Figure 1.10). This mechanism works kind of like a stoplight, signaling the sending device to stop transmitting segment traffic to its overwhelmed peer. After the peer receiver processes the segments already in its memory reservoir—its buffer—it sends out a "ready" transport indicator. When the machine waiting to transmit the rest of its datagrams receives this "go" indictor, it resumes its transmission.

FIGURE 1.10 Transmitting segments with flow control

In fundamental, reliable, connection-oriented data transfer, datagrams are delivered to the receiving host in exactly the same sequence they're transmitted—and the transmission fails if this order is breached! If any data segments are lost, duplicated, or damaged along the way, a failure will transmit. This problem is solved by having the receiving host acknowledge that it has received each and every data segment.

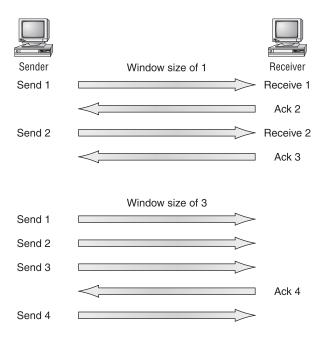
A service is considered connection-oriented if it has the following characteristics:

- A virtual circuit is set up (e.g., a three-way handshake).
- It uses sequencing.
- It uses acknowledgments.
- It uses flow control.

The types of flow control are buffering, windowing, and congestion avoidance.

Windowing

Ideally, data throughput happens quickly and efficiently. And as you can imagine, it would be slow if the transmitting machine had to wait for an acknowledgment after sending each segment. But because there's time available *after* the sender transmits the data segment and *before* it finishes processing acknowledgments from the receiving machine, the sender uses the break as an opportunity to transmit more data. The quantity of data segments (measured in bytes) that the transmitting machine is allowed to send without receiving an acknowledgment for them is called a *window*.



Windows are used to control the amount of outstanding, unacknowledged data segments.

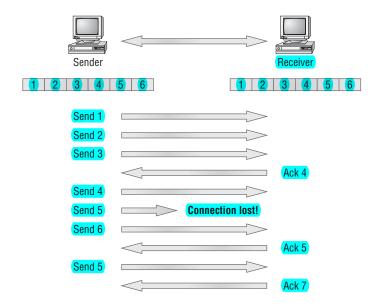
So the size of the window controls how much information is transferred from one end to the other. While some protocols quantify information by observing the number of packets, TCP/IP measures it by counting the number of bytes.

As you can see in Figure 1.11, there are two window sizes—one set to 1 and one set to 3.

FIGURE 1.11 Windowing

When you've configured a window size of 1, the sending machine waits for an acknowledgment for each data segment it transmits before transmitting another. If you've configured a window size of 3, it's allowed to transmit three data segments before an acknowledgment is received.

In our simplified example, both the sending and receiving machines are workstations. In reality this is not done in simple numbers but in the amount of bytes that can be sent.


If a receiving host fails to receive all the segments that it should acknowledge, the host can improve the communication session by decreasing the window size.

Acknowledgments

Reliable data delivery ensures the integrity of a stream of data sent from one machine to the other through a fully functional data link. It guarantees that the data won't be duplicated or lost. This is achieved through something called *positive acknowledgment with retransmission*—a technique that requires a receiving machine to communicate with the transmitting source by sending an acknowledgment message back to the sender when it receives data. The sender documents each segment it sends and waits for this acknowledgment before sending the next segment. When it sends a segment, the transmitting machine starts a timer and retransmits if it expires before an acknowledgment is returned from the receiving end.

In Figure 1.12, the sending machine transmits segments 1, 2, and 3. The receiving node acknowledges it has received them by requesting segment 4. When it receives the acknowledgment, the sender then transmits segments 4, 5, and 6. If segment 5 doesn't make it to the destination, the receiving node acknowledges that event with a request for the segment to be resent. The sending machine will then resend the lost segment and wait for an acknowledgment, which it must receive in order to move on to the transmission of segment 7.

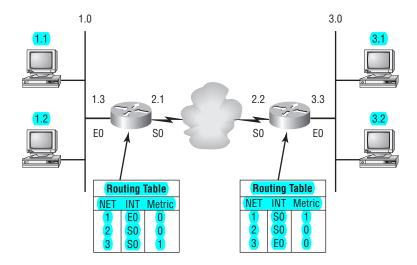
FIGURE 1.12 Transport layer reliable delivery

The Network Layer

The Network layer (also called layer 3) manages device addressing, tracks the location of devices on the network, and determines the best way to move data, which means that the Network layer must transport traffic between devices that aren't locally attached. Routers (layer 3 devices) are specified at the Network layer and provide the routing services within an internetwork.

It happens like this: First, when a packet is received on a router interface, the destination IP address is checked. If the packet isn't destined for that particular router, it will look up the destination network address in the routing table. Once the router chooses an exit interface, the packet will be sent to that interface to be framed and sent out on the local network. If the router can't find an entry for the packet's destination network in the routing table, the router drops the packet.

Two types of packets are used at the Network layer: data and route updates.

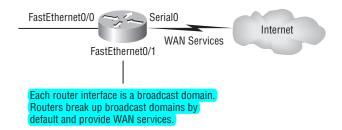

Data packets Used to transport user data through the internetwork. Protocols used to support data traffic are called *routed protocols*; examples of routed protocols are IP and IPv6. You'll learn about IP addressing in Chapters 2 and 3 and IPv6 in Chapter 13.

Route update packets Used to update neighboring routers about the networks connected to all routers within the internetwork. Protocols that send route update packets are called routing packets are used to help build and maintain routing tables on each router.

In Figure 1.13, I've given you an example of a routing table. The routing table used in a router includes the following information:

Network addresses Protocol-specific network addresses. A router must maintain a routing table for individual routing protocols because each routing protocol keeps track of a network with a different addressing scheme (IP, IPv6, and IPX, for example). Think of it as a street sign in each of the different languages spoken by the residents that live on a particular street. So, if there were American, Spanish, and French folks on a street named Cat, the sign would read Cat/Gato/Chat.

FIGURE 1.13 Routing table used in a router



Interface The exit interface a packet will take when destined for a specific network,

Metric The distance to the remote network. Different routing protocols use different ways of computing this distance. I'm going to cover routing protocols in Chapters 6 and 7, but for now, know that some routing protocols (namely RIP) use something called a *hop count* (the number of routers a packet passes through en route to a remote network), while others use bandwidth, delay of the line, or even tick count (1/18 of a second).

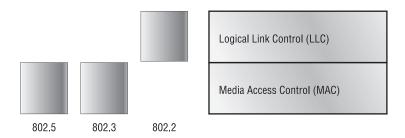
And as I mentioned earlier, routers break up broadcast domains, which means that by default, broadcasts aren't forwarded through a router. Do you remember why this is a good thing? Routers also break up collision domains, but you can also do that using layer 2 (Data Link layer) switches. Because each interface in a router represents a separate network, it must be assigned unique network identification numbers, and each host on the network connected to that router must use the same network number. Figure 1.14 shows how a router works in an internetwork.

FIGURE 1.14 A router in an internetwork

Here are some points about routers that you should really commit to memory:

- Routers, by default, will not forward any broadcast or multicast packets.
- Routers use the logical address in a Network layer header to determine the next hop router to forward the packet to.
- Routers can use access lists, created by an administrator, to control security on the types of packets that are allowed to enter or exit an interface.
- Routers can provide layer 2 bridging functions if needed and can simultaneously route through the same interface.
- Layer 3 devices (routers in this case) provide connections between virtual LANs (VLANs).
- Routers can provide quality of service (QoS) for specific types of network traffic.

Switching and VLANs and are covered in Chapter 8, "LAN Switching and STP," and Chapter 9, "Virtual LANs (VLANs)."


The Data Link Layer

The *Data Link layer* provides the physical transmission of the data and handles error notification, network topology, and flow control. This means that the Data Link layer will ensure that messages are delivered to the proper device on a LAN using hardware addresses and will translate messages from the Network layer into bits for the Physical layer to transmit.

The Data Link layer formats the message into pieces, each called a *data frame*, and adds a customized header containing the hardware destination and source address. This added information forms a sort of capsule that surrounds the original message in much the same way that engines, navigational devices, and other tools were attached to the lunar modules of the Apollo project. These various pieces of equipment were useful only during certain stages of space flight and were stripped off the module and discarded when their designated stage was complete. Data traveling through networks is similar.

Figure 1.15 shows the Data Link layer with the Ethernet and IEEE specifications. When you check it out, notice that the IEEE 802.2 standard is used in conjunction with and adds functionality to the other IEEE standards.

FIGURE 1.15 Data Link layer

It's important for you to understand that routers, which work at the Network layer, don't care at all about where a particular host is located. They're only concerned about where networks are located and the best way to reach them—including remote ones. Routers are totally obsessive when it comes to networks. And for once, this is a good thing! It's the Data Link layer that's responsible for the actual unique identification of each device that resides on a local network.

For a host to send packets to individual hosts on a local network as well as transmit packets between routers, the Data Link layer uses hardware addressing. Each time a packet is sent between routers, it's framed with control information at the Data Link layer, but that information is stripped off at the receiving router and only the original packet is left completely intact. This framing of the packet continues for each hop until the packet is finally delivered to the correct receiving host. It's really important to understand that the packet itself is never altered along the route; it's only encapsulated with the type of control information required for it to be properly passed on to the different media types.

The IEEE Ethernet Data Link layer has two sublayers:

Media Access Control (MAC) 802.3 Defines how packets are placed on the media. Contention media access is "first come/first served" access where everyone shares the same bandwidth—hence the name. Physical addressing is defined here, as well as logical topologies. What's a logical topology? It's the signal path through a physical topology. Line discipline, error notification (not correction), ordered delivery of frames, and optional flow control can also be used at this sublayer.

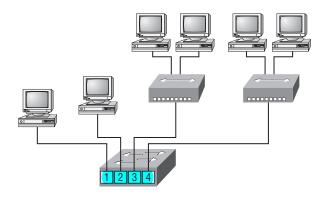
Logical Link Control (LLC) 802.2 Responsible for identifying Network layer protocols and then encapsulating them. An LLC header tells the Data Link layer what to do with a packet once a frame is received. It works like this: A host will receive a frame and look in the LLC header to find out where the packet is destined—say, the IP protocol at the Network layer. The LLC can also provide flow control and sequencing of control bits.

The switches and bridges I talked about near the beginning of the chapter both work at the Data Link layer and filter the network using hardware (MAC) addresses. We will look at these in the following section.

Switches and Bridges at the Data Link Layer

Layer 2 switching is considered hardware-based bridging because it uses specialized hardware called an *application-specific integrated circuit (ASIC)*. ASICs can run up to gigabit speeds with very low latency rates.

Latency is the time measured from when a frame enters a port to the time it exits a port.


Bridges and switches read each frame as it passes through the network. The layer 2 device then puts the source hardware address in a filter table and keeps track of which port the frame was received on. This information (logged in the bridge's or switch's filter table) is what helps the machine determine the location of the specific sending device. Figure 1.16 shows a switch in an internetwork.

The real estate business is all about location, location, location, and it's the same way for both layer 2 and layer 3 devices. Though both need to be able to negotiate the network, it's crucial to remember that they're concerned with very different parts of it. Primarily, layer 3 machines (such as routers) need to locate specific networks, whereas layer 2 machines (switches and bridges) need to eventually locate specific devices. So, networks are to routers as individual devices are to switches and bridges. And routing tables that "map" the internetwork are for routers as filter tables that "map" individual devices are for switches and bridges.

After a filter table is built on the layer 2 device, it will forward frames only to the segment where the destination hardware address is located. If the destination device is on the same segment as the frame, the layer 2 device will block the frame from going to any other segments. If the destination is on a different segment, the frame can be transmitted only to that segment. This is called *transparent bridging*.

When a switch interface receives a frame with a destination hardware address that isn't found in the device's filter table, it will forward the frame to all connected segments. If the unknown device that was sent the "mystery frame" replies to this forwarding action, the switch updates its filter table regarding that device's location. But in the event the destination address of the transmitting frame is a broadcast address, the switch will forward all broadcasts to every connected segment by default.

FIGURE 1.16 A switch in an internetwork

Each segment has its own collision domain.
All segments are in the same broadcast domain.

All devices that the broadcast is forwarded to are considered to be in the same broadcast domain. This can be a problem; layer 2 devices propagate layer 2 broadcast storms that choke performance, and the only way to stop a broadcast storm from propagating through an internetwork is with a layer 3 device—a router.

The biggest benefit of using switches instead of hubs in your internetwork is that each switch port is actually its own collision domain. (Conversely, a hub creates one large collision domain.) But even armed with a switch, you still can't break up broadcast domains. Neither switches nor bridges will do that. They'll typically simply forward all broadcasts instead.

Another benefit of LAN switching over hub-centered implementations is that each device on every segment plugged into a switch can transmit simultaneously—at least, they can as long as there is only one host on each port and a hub isn't plugged into a switch port. As you might have guessed, hubs allow only one device per network segment to communicate at a time.

Here's another binary number:

11001100

Your answer would be 1100 = 12 and 1100 = 12 (therefore, it's converted to CC in hex). The decimal conversion answer would be 128 + 64 + 8 + 4 = 204.

One more example, then we need to get working on the Physical layer. Suppose you had the following binary number:

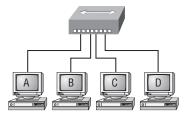
10110101

The hex answer would be 0xB5, since 1011 converts to B and 0101 converts to 5 in hex value. The decimal equivalent is 128 + 32 + 16 + 4 + 1 = 181.

See Written Lab 1.4 for more practice with binary/hex/decimal conversion.

The Physical Layer

Finally arriving at the bottom, we find that the *Physical layer* does two things: It sends bits and receives bits. Bits come only in values of 1 or 0—a Morse code with numerical values. The Physical layer communicates directly with the various types of actual communication media. Different kinds of media represent these bit values in different ways. Some use audio tones, while others employ *state transitions*—changes in voltage from high to low and low to high. Specific protocols are needed for each type of media to describe the proper bit patterns to be used, how data is encoded into media signals, and the various qualities of the physical media's attachment interface.


The Physical layer specifies the electrical, mechanical, procedural, and functional requirements for activating, maintaining, and deactivating a physical link between end systems. This layer is also where you identify the interface between the *data terminal equipment (DTE)* and the *data communication equipment (DCE)*. (Some old phone-company employees still call DCE data circuit-terminating equipment.) The DCE is usually located at the service provider, while the DTE is the attached device. The services available to the DTE are most often accessed via a modem or *channel service unit/data service unit (CSU/DSU)*.

The Physical layer's connectors and different physical topologies are defined by the OSI as standards, allowing disparate systems to communicate. The CCNA objectives are only interested in the IEEE Ethernet standards.

Hubs at the Physical Layer

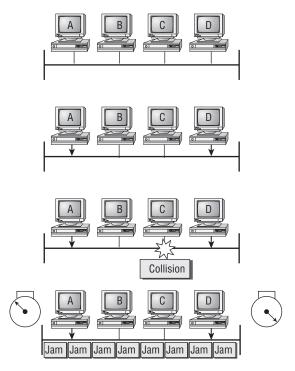
A *hub* is really a multiple-port repeater. A repeater receives a digital signal and reamplifies or regenerates that signal and then forwards the digital signal out all active ports without looking at any data. An active hub does the same thing. Any digital signal received from a segment on a hub port is regenerated or reamplified and transmitted out all ports on the hub. This means all devices plugged into a hub are in the same collision domain as well as in the same broadcast domain. Figure 1.17 shows a hub in a network.

FIGURE 1.17 A hub in a network

All devices in the same collision domain.
All devices in the same broadcast domain.
Devices share the same bandwidth.

Hubs, like repeaters, don't examine any of the traffic as it enters and is then transmitted out to the other parts of the physical media. Every device connected to the hub, or hubs, must listen if a device transmits. A physical star network—where the hub is a central device and cables extend in all directions out from it—is the type of topology a hub creates. Visually, the design really does resemble a star, whereas Ethernet networks run a logical bus topology, meaning that the signal has to run through the network from end to end.

Hubs and repeaters can be used to enlarge the area covered by a single LAN segment, although I do not recommend this. LAN switches are affordable for almost every situation.


Ethernet Networking

Ethernet is a contention media access method that allows all hosts on a network to share the same bandwidth of a link. Ethernet is popular because it's readily scalable, meaning that it's comparatively easy to integrate new technologies, such as Fast Ethernet and Gigabit Ethernet, into an existing network infrastructure. It's also relatively simple to implement in the first place, and with it, troubleshooting is reasonably straightforward. Ethernet uses both Data Link and Physical layer specifications, and this section of the chapter will give you both the Data Link layer and Physical layer information you need to effectively implement, troubleshoot, and maintain an Ethernet network.

Ethernet networking uses *Carrier Sense Multiple Access with Collision Detection (CSMA/CD)*, a protocol that helps devices share the bandwidth evenly without having two devices transmit at the same time on the network medium. CSMA/CD was created to overcome the problem of those collisions that occur when packets are transmitted simultaneously from different nodes. And trust me—good collision management is crucial, because when a node transmits in a CSMA/CD network, all the other nodes on the network receive and examine that transmission. Only bridges and routers can effectively prevent a transmission from propagating throughout the entire network!

So, how does the CSMA/CD protocol work? Let's start by taking a look at Figure 1.18.

FIGURE 1.18 CSMA/CD

Carrier Sense Multiple Access with Collision Detection (CSMA/CD)

When a host wants to transmit over the network, it first checks for the presence of a digital signal on the wire. If all is clear (no other host is transmitting), the host will then proceed with its transmission. But it doesn't stop there. The transmitting host constantly monitors the wire to make sure no other hosts begin transmitting. If the host detects another signal on the wire, it sends out an extended jam signal that causes all nodes on the segment to stop sending data (think busy signal). The nodes respond to that jam signal by waiting a while before attempting to transmit again. Backoff algorithms determine when the colliding stations can retransmit. If collisions keep occurring after 15 tries, the nodes attempting to transmit will then timeout. Pretty clean!

When a collision occurs on an Ethernet LAN, the following happens:

- A jam signal informs all devices that a collision occurred.
- The collision invokes a random backoff algorithm.
- Each device on the Ethernet segment stops transmitting for a short time until the timers expire.
- All hosts have equal priority to transmit after the timers have expired.