Al-Mustaqbal University College Department of Pharmacy 5th stage Clinical Toxicology Lecture: 5



Digoxin, TCA, & CNS Depressants Toxicity

QASSIM A ZIGAM

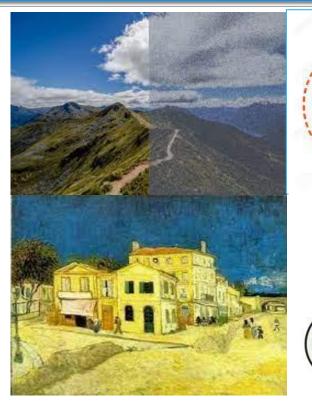
- **✓** Digitalis is a plant-derived cardiac glycoside found in certain flowering plants (such as oleander and lily of the valley).
- ✓ Digitalis commonly used in the treatment of chronic heart failure (CHF), atrial fibrillation, and re-entrant supraventricular tachycardia.
- **✓ Digoxin** is the available preparation of digitalis.

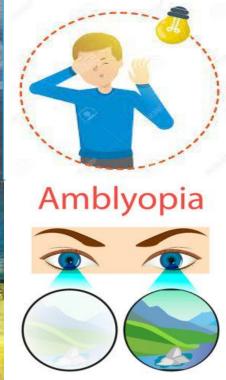
- **✓** The incidence of digitalis toxicity has declined in recent years due to improved technology for monitoring of drug levels and increased awareness of drug interactions.
- ✓ Nevertheless, cardiac glycoside toxicity continues to be a problem because of its wide use and its narrow therapeutic window.

- **✓ Acute** digitalis toxicity can result from:
 - 1. Unintentional or suicidal overdose of digoxin
 - 2. Accidental ingestion of plants that contain cardiac glycosides

- **✓ Chronic** toxicity in patients on digoxin therapy may result from:
 - 1. Deteriorating renal function
 - 2. Dehydration
 - 3. Electrolyte disturbances
 - 4. Drug interactions
- **✓** Alterations in cardiac rate and rhythm from digitalis toxicity may simulate almost every known type of dysrhythmia.

Signs and symptoms: Digitalis toxicity produces:


- **✓ CNS toxicity**
- **✓** Visual toxicity
- **✓** GIT toxicity
- **✓** Cardiac manifestations


CNS symptoms of digitalis toxicity include the following:

- **✓** Drowsiness, Lethargy, Fatigue, & Neuralgia
- **✓** Headache, Dizziness, Confusion, & Hallucinations
- **✓** Seizures (rare)
- **✓** Paresthesias and neuropathic pain

Visual symptoms include:

- **✓** Snowy vision
- ✓ Photophobia
- **✓** Decreased visual acuity
- ✓ Yellow halos around lights (xanthopsia)
- **✓** Transient amblyopia

GIT symptoms in acute or chronic toxicity include:

- **✓** Anorexia & Weight loss
- **✓** Failure to thrive (in pediatric patients)
- **✓** Nausea & Vomiting
- **✓** Abdominal pain & Diarrhea

Cardiac symptoms include:

- ✓ Palpitations, Shortness of breath, & Syncope (temporary loss of consciousness caused by a fall in blood pressure)
- **✓** Swelling of lower extremities
- **✓**Bradycardia, Hypotension, & Dyspnea

Diagnosis:

- **✓** Serum digoxin level
- **✓**Electrolytes (In acute toxicity, hyperkalemia is common)
- **✓** Renal function test
- **✓ECG** (Digoxin toxicity may cause almost any dysrhythmia)

Treatment:

Treatment of digoxin toxicity should be guided by the patient's signs and symptoms and the specific toxic effects and not necessarily by digoxin levels alone.

Supportive care of digitalis toxicity includes the following:

- 1. Hydration with IV fluids
- 2. Oxygenation and support of ventilatory function
- 3. Discontinuation of the drug, and, sometimes, the correction of electrolyte imbalances
- 4. GI decontamination: Activated charcoal is indicated for acute overdose

Treatment digitalis toxicity includes the following:

- 1. Treatment of electrolyte imbalance
 - **✓** Treat hyperkalemia by using sodium bicarbonate to correct metabolic acidosis and insulin plus glucose to enhance potassium uptake by cells.
 - ✓ Treatment with digoxin Fab fragments is indicated for a potassium level greater than 5 mEq/L.
 - **✓**Hemodialysis may be necessary for uncontrolled hyperkalemia.

Treatment digitalis toxicity includes the following:

- 2. Digoxin immune Fab (Digibind)
 - **✓** Digoxin immune Fab is considered the **first-line** treatment for **significant** dysrhythmias from digitalis toxicity.
 - ✓ Digoxin immune Fab is an immunoglobulin fragment that binds with digoxin.
 - **✓** Digoxin immune Fab is packaged in a 40-mg vial and must be reconstituted with 4 mL of sterile water for IV injection.

- **✓** The toxic effects of TCAs are results of the following 4 main pharmacologic properties:
- 1. Inhibition of norepinephrine and serotonin reuptake at nerve terminals.
- 2. Anticholinergic action
- 3. Direct alpha-adrenergic blockade
- 4. Membrane stabilizing effect on the myocardium by blocking the cardiac myocyte fast sodium channels

✓ Physical findings are:

- 1. Tachycardia and Hypotension
- 2. Fever, Altered mental status, and Rigidity
- 3. Ileus (severe intestinal spasm with vomiting), and Absent bowel sounds.
- 4. Dry skin and mucous membranes.
- 5. Mydriasis

✓ Treatment:

- 1. GIT decontamination may be helpful within the first several hours post-ingestion because TCAs can slow gastric emptying through the anticholinergic activity.
- 2. Gastric lavage.
- 3. Activated charcoal reduces the absorption of CAs. It should be administered only in patients who are able to protect the airway.

✓Treatment:

- 4. Administer intravenous fluid if the patient is hypotensive.
- 5. For hypotension refractory to intravenous saline, vasopressors may be used

✓ Treatment:

- 4. Administer intravenous fluid if the patient is hypotensive, for hypotension refractory to intravenous saline, vasopressors may be used.
- 5. Benzodiazepines are recommended for TCA-associated convulsions.
- 6. Serum alkalinization with intravenous sodium bicarbonate has been the mainstay of therapy in TCA-induced cardiovascular toxicity.

- **✓ Sedative-hypnotics** are a group of drugs that cause CNS depression.
- **✓** Benzodiazepines and barbiturates are the most commonly used agents in this class.
- **✓** Barbiturates include:
- 1. Ultrashort acting thiopental
- 2. Short and intermediate acting Amobarbital, pentobarbital
- 3. Long acting Phenobarbital

- **✓** Nonbarbiturates include:
- 1. Benzodiazepines
- 2. Meprobamate
- 3. Chloral hydrate
- 4. Glutethimide

Pathophysiology:

- **✓** All the sedative-hypnotics are general CNS depressants.
- **✓ Most** stimulate the activity of **GABA**, the principal inhibitory neurotransmitter in the CNS.
- ✓ Mild Barbiturates toxicity is characterized by ataxia, incoordination, nystagmus, slurred speech, and altered level of consciousness.

- **✓** Pathophysiology:
- **✓** Moderate poisoning leads to respiratory depression and hyporeflexia.
- **✓**Severe poisoning leads to areflexic coma, apnea, and hypotension
- **✓ Miosis** is common.
- **✓** Hypotension is usually secondary to vasodilation and negative cardiac inotropic effects.

Treatment:

- ✓ Establish ABCs, obtain IV access, provide oxygen, and perform aggressive supportive care with airway protection as necessary.
- **✓ Ipecac** syrup is not recommended for home use because of the fear of emesis after onset of respiratory depression .
- **✓ Ensure** adequate airway and ventilation. Consider and reassess the need for endotracheal intubation.

Treatment:

- **✓**Flumazenil competitively and reversibly binds benzodiazepine receptors.
- **✓ Gastric lavage** may be performed if the patient presents within 1 hour of ingestion .
- **✓** The use of activated charcoal.
- **✓** Alkaline diuresis enhances elimination of phenobarbital and other long-acting barbiturates. It is recommended for all symptomatic patients with long-acting barbiturate toxicity

THANK YOU FOR YOUR ATTENTION